Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 88(6): 1564-1577, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37768755

ABSTRACT

Binary zinc oxide (ZnO) nanocomposites with different noble metals, silver (Ag) and ruthenium (Ru), were prepared from an aqueous leaf extract of Callistemon viminalis. The biosynthesized photocatalysts were characterized and examined for their photocatalytic disinfection against Escherichia coli isolated from hospital wastewater. The influence of the different noble metals showed a difference in physicochemical characteristics and photocatalytic efficiency between Ag-ZnO and Ru-ZnO. The photocatalytic degradation of methylene blue and photocatalytic disinfection were found to be in the order Ag-ZnO > Ru-ZnO > ZnO. The photocatalytic disinfection of Ag-ZnO reached a 75% reduction in 60 min, compared to 34 and 9% reductions of Ru-ZnO and ZnO, respectively. The kinetic reaction rate for the photocatalytic disinfection of Ag-ZnO was found to be 2.8 times higher than that of Ru-ZnO. The outstanding photocatalytic activity of Ag-ZnO over Ru-ZnO was attributed to higher crystallinity, greater UVA adsorption capacity, smaller particle size, and the additional antimicrobial effect of Ag itself. The C. viminalis-mediated Ag-ZnO nanocomposites can be a potential candidate for photocatalytic disinfection of drug-resistant E. coli in hospital wastewater.

2.
J Environ Sci (China) ; 124: 414-428, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182149

ABSTRACT

MXenes, a new family of two-dimensional transition metal carbides or nitrides, have attracted tremendous attention for various applications due to their unique properties such as good electrical conductivity, hydrophilicity, and ion intercalability. In this work, Ti3C2 MXene, or MX, is converted to MX-TiO2 composites using a simple and rapid microwave hydrothermal treatment in HCl/NaCl mixture solution that induces formation of fine TiO2 particles on the MX parent structure and imparts photocatalytic activity to the resulting MX-TiO2 composites. The composites were used for enrofloxacin (ENR), a frequently found contaminating antibiotic, removal from water. The relative amount of the MX and TiO2 can be controlled by controlling the hydrothermal temperature resulting in composites with tunable adsorption/photocatalytic properties. NaCl addition was found to play important role as composites synthesized without NaCl could not adsorb enrofloxacin well. Adding NaCl into the hydrothermal treatment causes sodium ions to be simultaneously intercalated into the composite structure, improving ENR adsorption greatly from 1 to 6 mg ENR/g composite. It also slows down the MX to TiO2 conversion leading to a smaller and more uniform distribution of TiO2 particles on the structure. MX-TiO2/NaCl composites, which have sodium intercalated in their structures, showed both higher ENR adsorption and photocatalytic activity than composites without NaCl despite the latter having higher TiO2 content. Adsorbed ENR on the composites can be efficiently degraded by free radicals generated from the photoexcited TiO2 particles, leading to high photocatalytic degradation efficiency. This demonstrates the synergetic effect between adsorption and photocatalytic degradation of the synthesized compounds.


Subject(s)
Anti-Bacterial Agents , Water , Catalysis , Enrofloxacin , Sodium , Titanium , Water/chemistry
3.
Food Chem Toxicol ; 168: 113377, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35995078

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are organofluorine compounds has been manufactured for more than five decades and used in different purposes. Among persistent organic pollutants, PFAS are toxic, bioaccumulative in humans, wildlife, and global environment. As per environmental protection agency (EPA) guidelines, the perfluorooctanoate and perfluorooctane sulfonate permissible limit was 0.07 ng/L in drinking water. When the concentration exceeds the acceptable limit, it has negative consequences for humans. In such a case, PFAS monitoring is critical, and a quick detection technique are highly needed. Health departments and regulatory agencies have interests in monitoring of PFAS presences and exposures. For the detection of PFAS, numerous highly precise and sensitive chromatographic methods are available. However, the drawbacks of analytical techniques include timely sample preparations and the lack of on-site applicability. As a result, there is an increasing demand for simple sensor systems for monitoring of PFAS in real field samples. In this review, we first describe the sample pre-treatment and analytical techniques for the detection of PFAS. Second, we broadly discussed available sensor system for the quantification of PFAS in different filed samples. Finally, future trends in PFASs sensor are also presented.


Subject(s)
Drinking Water , Environmental Pollutants , Fluorocarbons , Drinking Water/analysis , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Fluorocarbons/analysis , Fluorocarbons/toxicity , Humans , Persistent Organic Pollutants , United States , United States Environmental Protection Agency
4.
Chemosphere ; 304: 135229, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35688188

ABSTRACT

Anaerobic digestion is widely used for wastewater treatment, but this approach often relies on microbial communities that are adversely affected by high-salinity conditions. This study investigated the applicability of an anaerobic moving bed biofilm reactor (AMBBR) to treating high-salinity wastewater. The removal performance and microbial community were examined under salinity conditions of 1000-3000 mg/L, and a soluble chemical oxygen demand (sCOD) removal efficiency of up to 8% ± 2.74% was achieved at high-salinity. Scanning electron microscopy showed that microorganisms successfully attached onto the polyvinyl alcohol gel carrier, and the extracellular polymeric substances on the biofilm increased at higher salt concentrations. The AMBBR also maintained traditionally accepted levels of total alkalinity and volatile fatty acids for stable wastewater processing under these operating conditions. High-throughput sequencing indicated that Desulfomicrobium and three methanogenic groups were the dominant contributors to sCOD removal. Overall, the results showed that the AMBBR can successfully treat fish factory wastewater under varying salinity conditions.


Subject(s)
Waste Disposal, Fluid , Wastewater , Anaerobiosis , Biofilms , Bioreactors , Salinity , Waste Disposal, Fluid/methods
5.
Sci Total Environ ; 833: 155132, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35405242

ABSTRACT

Bioaugmentation of nitrifying cultures can accelerate nitrification during startup and transition periods of recirculating aquaculture system (RAS) operations. To formulate nitrifying cultures for RASs, impacts of ammonia and salinity (NaCl) on culturing nitrifying microorganisms were comprehensively investigated by including currently known groups of nitrifying microorganisms (ammonia oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), comammox, Nitrospira, and Nitrobacter). By varying ammonia loading rate (ALRs of 1.6, 8, 20, 40, 60 and 150 mgN/L/d) of continuous-flow bioreactors fed with inorganic medium experimented for culture preparation, cultures containing distinct patterns of nitrifying communities were produced. Operating the reactors at the ALRs of ≤40 mgN/L/d, resulting in the effluent total ammonia nitrogen (TAN) and nitrite concentrations of ≤2.64 and ≤0.53 mgN/L, respectively, delivered the consortia consisting of a broad spectrum of substrate affinity nitrifying microorganisms. At the lower ranges of these ALRs (≤8 mgN/L/d), the most desirable consortia comprising comparable numbers of AOB, AOA, and comammox could be produced (the effluent TAN concentrations of ≤0.20 mgN/L), which would be resilient for applying in various RAS types. Enriching the cultures at the ALRs of ≥60 mgN/L/d allowed only the nitrifying microorganisms with low substrate affinity to dominate, incongruent with the consortia found in actual RASs. AOB were adaptable at all salinity studied (2, 15, and 30 g/L), while AOA and comammox were sensitive to elevated salinity (15 and 30 g/L, respectively). The ammonia removal rate of a culture prepared at 2 g/L salinity decreased largely when applied at 15 and 30 g/L. In contrast, those prepared at 15 and 30 g/L were more robust to different salinity. Separately preparing the cultures at different salinity for uses in freshwater-low salinity and brackish-marine RASs is recommended. The findings of this work enhance our understanding on how to formulate nitrifying culture augmentation for used in different RAS types.


Subject(s)
Ammonia , Betaproteobacteria , Archaea , Nitrification , Oxidation-Reduction , Phylogeny , Sodium Chloride
6.
Environ Res ; 206: 112542, 2022 04 15.
Article in English | MEDLINE | ID: mdl-34929185

ABSTRACT

Plastics and biofilms have a complicated relationship that has great interest. Bacterial cell attachment and biofilm formation is considered to cause health and environmental risks from plastic waste accumulation. In water, plastic waste could serve as a new substrate for bacteria. In our study, the attachment of Escherichia coli K12, to four types of plastic shopping bags (biodegradable polylactic acid and the non-biodegradable polypropylene, polyethylene and polyvinyl chloride) was investigated. The change in physicochemical phenomena of each plastic, such as reduced hydrophobicity and higher exopolysaccharide concentrations (total extractable protein and carbohydrate) resulted in increased biofilm content on the plastic surfaces. The bacterial colonization of different plastic surfaces controls the ionic strength of the nutrition sources. The adhesion of Escherichia coli K12 cells on the surfaces were revealed by SEM images. The finding shows that increases surface roughness, besides favor for adhesion of bacterial cells due to hydrophobicity leading to a rapid attachment of Escherichia coli K12 on the surfaces. In addition, we used Derjaguin-Landau-Verwey-Overbeek theory to predict the attachment of Escherichia coli K12, which gave result of adhesion due to the high energy barrier. This present study added to our knowledge of the possible consequences of plastics acting as a new habitat for microbes in different aquatic condition.


Subject(s)
Biofilms , Plastics , Bacterial Adhesion , Hydrophobic and Hydrophilic Interactions , Polyethylene , Surface Properties
7.
J Photochem Photobiol B ; 176: 17-24, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28941774

ABSTRACT

Titanium dioxide (TiO2) photocatalytic reaction has great potential for the disinfection of harmful pathogens. However, the disinfection mechanisms of TiO2 photocatalysis are not yet well-known for fungi and protozoa. In this work, the photocatalytic disinfection mechanism of Fusarium monoliforme and Aspergillus niger under low intensity UVA light (365nm, <10W/m2) was studied at the ultrastructural level. Photocatalytic treatments showed that the photocatalytic oxidation of 10% TiO2 based paint was efficacious in the complete disinfection of F. monoliforme under low intensity UVA light. No growth of F. monoliforme was observed on agar plate in the subsequent dark. Transmission electron microscopy (TEM) of F. monoliforme exposed to TiO2 photocatalysis treatment showed a distinct damage to electron-dense outer cell wall, but not to an underlying electron-transparent layer cell wall. The TEM image revealed that the UVA-light only did not damage cell wall, cell membrane and cellular organelles. Unlike, A. niger was more sensitive to UVA-light. Serious destructions of cell membrane and cellular organelles were shown in A. niger exposed to UVA-light only and photocatalytic treatments. However, morphological change in A. niger cell wall was only observed in photocatalytic treatment. Changes to the outermost melanin like layer and cell wall of A. niger spore due to photocatalytic treatment were greatly apparent while the intracellular organelles of A. niger spore were not affected. Therefore, regrowth of A. niger on agar plate was expected from the germination of A. niger spore in the subsequent dark. These observations give a better understanding of the photocatalytic disinfection mechanism toward fungi.


Subject(s)
Aspergillus niger/radiation effects , Disinfection/methods , Fusarium/radiation effects , Titanium/chemistry , Ultraviolet Rays , Aspergillus niger/metabolism , Catalysis , Fusarium/metabolism , Melanins/metabolism , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission
8.
Int J Food Microbiol ; 123(3): 288-92, 2008 Apr 30.
Article in English | MEDLINE | ID: mdl-18262298

ABSTRACT

Titanium dioxide (TiO2) has attracted a great deal of attention as a photocatalytic disinfecting material in the food and environmental industry. TiO2 has been used to inactivate a wide variety of microorganisms in many applications. In the present study, we aimed to develop a TiO2 powder-coated packaging film and clarify its ability to inactivate Escherichia coli both in vitro and in actual tests, using two different particle sizes and two types of illumination at different intensities. No inhibition effect of the testing method itself on the growth of E. coli was observed. The cells of E. coli were found to have decreased 3 log CFU/ml after 180 min of illumination by two 20 W black-light bulbs (wavelength of 300-400 nm) on TiO2-coated oriented-polypropylene (OPP) film, while E. coli decreased 1 log CFU/m with black-light illumination of uncoated OPP film. The results showed that both ultraviolet A (UVA; wavelength of 315-400 nm) alone and TiO2-coated OPP film combined with UVA reduced the number of E. coli cell in vitro, but that the reduction of E. coli cell numbers was greater by TiO2-coated OPP film combined with UVA. The antimicrobial effect of TiO2-coated film is dependent on the UVA light intensity (0, <0.05 and 1 mW/cm2) and the kind of artificial light (black-light and daylight fluorescent bulbs), but it is independent of the particle size of TiO2 coating on the surface of OPP film. The surviving cell numbers of E. coli on TiO2-coated film decreased 3 log and 0.35 log CFU/ml after 180 min of illumination by two 20 W black bulbs and two 20 W daylight fluorescent bulbs, respectively. Despite the lesser efficacy of the photocatalytic method with fluorescent lights, the survival of E. coli cells using this method was 50% of that using fluorescent lights alone. In the actual test, the number of E. coli cells from cut lettuce stored in a TiO2-coated film bag irradiated with UVA light decreased from 6.4 on Day 0 to 4.9 log CFU/g on Day 1, while that of an uncoated film bag irradiated with UVA light decreased from 6.4 to 6.1 log CFU/g after 1 day of storage. The result shows that the TiO2-coated film could reduce the microbial contamination on the surface of solid food products and thus reduce the risks of microbial growth on fresh-cut produce.


Subject(s)
Escherichia coli/drug effects , Food Contamination/prevention & control , Food Packaging/methods , Lactuca/microbiology , Photosensitizing Agents/pharmacology , Titanium/pharmacology , Ultraviolet Rays , Colony Count, Microbial , Consumer Product Safety , Dose-Response Relationship, Radiation , Escherichia coli/growth & development , Food Contamination/analysis , Food Preservation/methods , Humans , Particle Size , Powders
SELECTION OF CITATIONS
SEARCH DETAIL