Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
1.
Article in English | MEDLINE | ID: mdl-39243271

ABSTRACT

BACKGROUND: Nonattendance at scheduled outpatient visits among children with asthma has been associated with an increased risk of acute asthma events and increased health care expenses. Specific risk factors for nonattendance have been suggested, but a comprehensive overview is lacking. OBJECTIVE: To investigate risk factors for nonattendance among children with asthma and assess whether nonattendance associates with acute events through a systematic review and meta-analysis. METHODS: The study (PROSPERO: CRD42023471893) was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines using the PubMed, Ovid MEDLINE, Embase, ClinicalTrials.gov, and Cochrane Library databases and search terms "asthma/wheeze," "child," and "nonattendance." Original peer-reviewed studies in English were included and evaluated for risk of bias using the Newcastle Ottawa scale. A meta-analysis was performed for all risk factors. Finally, we analyzed whether nonattendance was associated with the risk of acute events. RESULTS: A total of 17 studies encompassing 27,023 children with asthma were included. The meta-analysis was performed on 11 eligible studies, with 25,948 children, and identified the following risk factors for nonattendance; teenage versus preteen (odds ratio [OR] 1.26; 95% confidence interval [95% CI] 1.06-1.49; P < .01), non-White versus White ethnicity (OR 1.51; 95% CI 1.04-2.18; P = .03) and lower disease severity (OR 1.41; 95% CI 1.13-1.77; P < .01). There were no significant findings in the meta-analysis for insurance status, atopy, sex, or rural residence. Nonattendance associated with an increased risk of acute asthma events (OR 1.11; 95% CI 1.07-1.16; P < .01). CONCLUSIONS: This systematic review and meta-analysis identified specific risk factors to facilitate the development of a strategy against nonattendance for pediatric patients with asthma. This is particularly important given nonattendance being associated with an increased risk of acute asthma.

2.
Allergy ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221476

ABSTRACT

BACKGROUND: Viral infection is a common trigger of severe respiratory illnesses in early life and a risk factor for later asthma development. The mechanism leading to asthma could involve an aberrant airway immune response to viral infections, but this has rarely been studied in a human setting. OBJECTIVES: To investigate in situ virus-specific differences in upper airway immune mediator levels during viral episodes of respiratory illnesses and the association with later asthma. METHODS: We included 493 episodes of acute respiratory illnesses in 277 children aged 0-3 years from the COPSAC2010 mother-child cohort. Levels of 18 different immune mediators were assessed in nasal epithelial lining fluid using high-sensitivity MesoScale Discovery kits and compared between children with and without viral PCR-identification in nasopharyngeal samples. Finally, we investigated whether the virus-specific immune response was associated with asthma by age 6 years. RESULTS: Viral detection were associated with upregulation of several Type 1 and regulatory immune mediators, including IFN-É£, TNF-α, CCL4, CXCL10 and IL-10 and downregulation of Type 2 and Type 17 immune mediators, including CCL13, and CXCL8 (FDR <0.05). Children developing asthma had decreased levels of IL-10 (FDR <0.05) during viral episodes compared to children not developing asthma. CONCLUSION: We described the airway immune mediator profile during viral respiratory illnesses in early life and showed that children developing asthma by age 6 years have a reduced regulatory (IL-10) immune mediator level. This provides insight into the interplay between early-life viral infections, airway immunity and asthma development.

3.
Med ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39151420

ABSTRACT

BACKGROUND: Bilirubin has antioxidant properties, and elevated levels within the normal range have been associated with improved lung function and decreased risk of asthma in adults, but studies of young children are scarce. Here, we investigate associations between bilirubin in early life and respiratory health endpoints during preschool age in two independent birth cohorts. METHODS: Bilirubin metabolites were assessed at ages 0.5, 1.5, and 6 years in COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010) and ages 1, 3, and 6 years in the VDAART (The Vitamin D Antenatal Asthma Reduction Trial) cohort. Meta-analyses were done to summarize the relationship between levels of bilirubin metabolites and asthma, infections, lung function, and allergic sensitization until age 6 across the cohorts. Interaction with the glucuronosyltransferase family 1 member A1 (UGT1A) genotype encoding for an enzyme in the bilirubin metabolism was explored, and metabolomics data were integrated to study underlying mechanisms. FINDINGS: Increasing bilirubin (Z,Z) at ages 1.5-3 years was associated with an increased risk of allergic sensitization (adjusted relative risk [aRR] = 1.85 [1.20-2.85], p = 0.005), and age 6 bilirubin (Z,Z) also showed a trend of association with allergic sensitization at age 6 (aRR = 1.31 [0.97-1.77], p = 0.08), which showed significant interaction for the age 6 bilirubin (Z,Z)xUGT1A genotype. Further, increasing bilirubin (E,E), bilirubin (Z,Z), and biliverdin at ages 1.5-3 years was associated with a lower forced expiratory volume at age 6 (aRR range = 0.81-0.91, p < 0.049) but without a significant interaction with the UGT1A genotype (p interactions > 0.05). Network analysis showed a significant correlation between bilirubin metabolism and acyl carnitines. There were no associations between bilirubin metabolites and the risk of asthma and infections. CONCLUSIONS: Bilirubin metabolism in early life may play a role in childhood respiratory health, particularly in children with specific UGT1A genotypes. FUNDING: The Lundbeck Foundation (Grant no R16-A1694), The Ministry of Health (Grant no 903516), Danish Council for Strategic Research (Grant no 0603-00280B), and The Capital Region Research Foundation have provided core support to the COPSAC research center. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 946228). The Vitamin D Antenatal Asthma Reduction Trial (VDDART, ClinicalTrials.gov identifier: NCT00920621) was supported by grant U01HL091528 from NHLBI, U54TR001012 from the National Centers for Advancing Translational Sciences (NCATS). Metabolomics work by VDAART was supported by the National Heart, Lung, and Blood Institute (NHLBI) grant R01HL123915 and R01HL141826. S.T.W. was supported by R01HL091528 from the NHLBI, UG3OD023268 from Office of The Director, National Institute of Health, and P01HL132825 from the NHLBI.

4.
Allergy ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39161223

ABSTRACT

BACKGROUND: Infantile colic is a common condition with limited knowledge about later clinical manifestations. We evaluated the role of the early life gut microbiome in infantile colic and later development of atopic and gastrointestinal disorders. METHODS: Copenhagen Prospective Studies on Asthma in Childhood2010 cohort was followed with 6 years of extensive clinical phenotyping. The 1-month gut microbiome was analyzed by 16S rRNA sequencing. Infantile colic was evaluated at age 3 months by interviews. Clinical endpoints included constipation to age 3 years and prospectively diagnosed asthma and atopic dermatitis in the first 6 years of life, and allergic sensitization from skin prick tests, specific Immunoglobulin E, and component analyses. RESULTS: Of 695 children, 55 children (7.9%) had infantile colic. Several factors were associated with colic including race, breastfeeding, and pets. The 1-month gut microbiome composition and taxa abundances were not associated with colic, however a sparse Partial Least Squares model including combined abundances of nine species was moderately predictive of colic: median, cross-validated AUC = 0.627, p = .003. Children with infantile colic had an increased risk of developing constipation (aOR, 2.88 [1.51-5.35], p = .001) later in life, but also asthma (aHR, 1.69 [1.02-2.79], p = .040), atopic dermatitis (aHR, 1.84 [1.20-2.81], p = .005) and had a higher number of positive allergic components (adjusted difference, 116% [14%-280%], p = .012) in the first 6 years. These associations were not mediated by gut microbiome differences. CONCLUSIONS: We link infantile colic with risk of developing constipation and atopic disorders in the first 6 years of life, which was not mediated through an altered gut microbiome at age 1-month. These results suggest infantile colic to involve gastrointestinal and/or atopic mechanisms.

5.
BMJ Paediatr Open ; 8(1)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39214547

ABSTRACT

BACKGROUND: Atopic diseases, obesity and neuropsychiatric disorders are lifestyle-related and environmental-related chronic inflammatory disorders, and the incidences have increased in the last years. OBJECTIVE: To outline the design of the 18-year follow-up of the Copenhagen Prospective Study on Asthma in Childhood (COPSAC2000) birth cohort, where risk factors of atopic diseases, obesity and neuropsychiatric disorders are identified through extensive characterisation of the environment, along with deep clinical phenotyping and biosampling for omics profiling. METHODS: COPSAC2000 is a Danish prospective clinical birth cohort study of 411 children born to mothers with asthma who were enrolled at 1 month of age and closely followed at the COPSAC clinical research unit through childhood for the development of atopic diseases. At the 18-year follow-up visit, biomaterial (hair, blood, urine, faeces, throat, and skin swabs, nasal lining fluid and scraping, and hypopharyngeal aspirates) and extensive information on environmental exposures and risk behaviours were collected along with deep metabolic characterisation and multiorgan investigations including anthropometrics, heart, lungs, kidneys, intestines, bones, muscles and skin. Neuropsychiatric diagnoses were captured from medical records and registers accompanied by electronic questionnaires on behavioural traits and psychopathology. RESULTS: A total of 370 (90%) of the 411 cohort participants completed the 18-year visit. Of these, 25.1% had asthma, 23.4% had a body mass index >25 kg/m2 and 16.8% had a psychiatric diagnosis in childhood. Of the 62 probands with a neuropsychiatric diagnosis in childhood, a total of 68.7% drank alcohol monthly, and when drinking, 22.2% drank >10 units. Of the participants, 31.4% were currently smoking, and of these, 24.1% smoked daily. A total of 23.8% had tried taking drugs, and 19.7% reported having done self-destructive behaviour. The mean screen time per day was 6.0 hours. CONCLUSION: This huge dataset on health and habits, exposures, metabolism, multiorgan assessments and biosamples from COPSAC2000 by age 18 provides a unique opportunity to explore risk factors and underlying mechanisms of atopic disease and other lifestyle-related, non-communicable diseases such as obesity and neuropsychiatric disorders, which are highly prevalent in the community and our cohort.


Subject(s)
Asthma , Birth Cohort , Humans , Denmark/epidemiology , Female , Male , Asthma/epidemiology , Follow-Up Studies , Adolescent , Prospective Studies , Risk Factors , Child , Mental Disorders/epidemiology , Child, Preschool , Infant , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Research Design
6.
Thorax ; 79(10): 943-952, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39117420

ABSTRACT

BACKGROUND: Infections in childhood remain a leading global cause of child mortality and environmental exposures seem crucial. We investigated whether urbanicity at birth was associated with the risk of infections and explored underlying mechanisms. METHODS: Children (n=633) from the COPSAC2010 mother-child cohort were monitored daily with symptom diaries of infection episodes during the first 3 years and prospectively diagnosed with asthma until age 6 years. Rural and urban environments were based on the CORINE land cover database. Child airway immune profile was measured at age 4 weeks. Maternal and child metabolomics profiling were assessed at pregnancy week 24 and at birth, respectively. RESULTS: We observed a mean (SD) total number of infections of 16.3 (8.4) consisting mainly of upper respiratory infections until age 3 years. Urban versus rural living increased infection risk (17.1 (8.7) vs 15.2 (7.9), adjusted incidence rate ratio; 1.15 (1.05-1.26), p=0.002) and altered the child airway immune profile, which increased infection risk (principal component 1 (PC1): 1.03 (1.00-1.06), p=0.038 and PC2: 1.04 (1.01-1.07), p=0.022). Urban living also altered the maternal and child metabolomic profiles, which also increased infection risk. The association between urbanicity and infection risk was partly mediated through the maternal metabolomic and child airway immune profiles. Finally, urbanicity increased the risk of asthma by age 6 years, which was mediated through early infection load (pACME<0.001). CONCLUSION: This study suggests urbanicity as an independent risk factor for early infections partly explained by changes in the early metabolic and immunological development with implications for later risk of asthma.


Subject(s)
Asthma , Respiratory Tract Infections , Urban Population , Humans , Female , Child, Preschool , Male , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/immunology , Asthma/epidemiology , Asthma/immunology , Infant , Risk Factors , Pregnancy , Infant, Newborn , Child , Prospective Studies , Rural Population , Environmental Exposure/adverse effects , Prenatal Exposure Delayed Effects , Metabolomics
7.
JAMA Dermatol ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196551

ABSTRACT

Importance: Eicosanoids have a pathophysiological role in atopic dermatitis (AD), but it is unknown whether this is affected by prenatal ω-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA; ie, fish oil) supplementation and genetic variations in the cyclooxygenase-1 (COX1) pathway. Objective: To explore the association of n-3 LCPUFA supplementation during pregnancy with risk of childhood AD overall and by maternal COX1 genotype. Design, Setting, and Participants: This prespecified secondary analysis of a randomized clinical trial included mother-child pairs from the Danish Copenhagen Prospective Studies on Asthma in Childhood 2010 birth cohort, with prospective follow-up until children were aged 10 years. In the trial, maternal and child COX1 genotypes were determined, and urinary eicosanoids were quantified when the child was 1 year of age. The present study was conducted from January 2019 to December 2021, and data were analyzed from January to September 2023. Intervention: A total of 736 pregnant women at 24 weeks' gestation were randomized 1:1 to 2.4 g of n-3 LCPUFA (fish oil) or placebo (olive oil) per day until 1 week post partum. Main Outcomes and Measures: Risk of childhood AD until age 10 years overall and by maternal COX1 genotype. Results: At age 10 years, 635 children (91%; 363 [57%] female) completed the clinical follow-up, and these mother-child pairs were included in this study; 321 (51%) were in the intervention group and 314 (49%) in the control group. Pregnancy n-3 LCPUFA supplementation was associated with lower urinary thromboxane A2 metabolites at age 1 year (ß, -0.46; 95% CI, -0.80 to -0.13; P = .006), which was also associated with COX1 rs1330344 genotype (ß per C allele, 0.47; 95% CI, 0.20-0.73; P = .001). Although neither n-3 LCPUFA supplementation (hazard ratio [HR], 1.00; 95% CI, 0.76-1.33; P = .97) nor maternal COX1 genotype (HR, 0.94; 95% CI, 0.74-1.19; P = .60) was associated with risk of childhood AD until age 10 years, there was evidence of an interaction between these variables (P < .001 for interaction). Among mothers with the TT genotype, risk of AD was reduced in the n-3 LCPUFA group compared with the placebo group (390 mother-child pairs [61%]; HR, 0.70; 95% CI, 0.50-0.98; P = .04); there was no association for mothers with the CT genotype (209 [33%]; HR, 1.29; 95% CI, 0.79-2.10; P = .31), and risk was increased among offspring of mothers with the CC genotype (37 [6%]; HR, 5.77; 95% CI, 1.63-20.47; P = .007). There was a significant interaction between n-3 LCPUFA supplementation and child COX1 genotype and development of AD (P = .002 for interaction). Conclusions and Relevance: In this secondary analysis of a randomized clinical trial, the association of prenatal n-3 LCPUFA supplementation with risk of childhood AD varied by maternal COX1 genotype. The findings could be used to inform a personalized prevention strategy of providing supplementation only to pregnant individuals with the TT genotype. Trial Registration: ClinicalTrials.gov: NCT00798226.

9.
J Allergy Clin Immunol ; 154(3): 670-678, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38825025

ABSTRACT

BACKGROUND: Eicosanoids are lipid mediators including thromboxanes (TXs), prostaglandins (PGs), and leukotrienes with a pathophysiological role in established atopic disease. However, their role in the inception of disease is unclear. This study aimed to investigate the association between urinary eicosanoids in early life and development of atopic disease. METHODS: This study quantified the levels of 21 eicosanoids in urine from children from the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010) (age 1 year, n = 450) and VDAART (Vitamin D Antenatal Asthma Reduction Trial) (age 3 years, n = 575) mother-child cohorts and analyzed the associations with development of wheeze/asthma, atopic dermatitis, and biomarkers of type-2 inflammation, applying false discovery rate of 5% (FDR5%) multiple testing correction. RESULTS: In both cohorts, analyses adjusted for environmental determinants showed that higher TXA2 eicosanoids in early life were associated with increased risk of developing atopic dermatitis (P < FDR5%) and type-2 inflammation (P < .05). In VDAART, lower PGE2 and PGI2 eicosanoids and higher isoprostanes were also associated with increased risk of atopic dermatitis (P < FDR5%). For wheeze/asthma, analyses in COPSAC2010 showed that lower isoprostanes and PGF2 eicosanoids and higher PGD2 eicosanoids at age 1 year associated with an increased risk at age 1-10 years (P < .05), whereas analyses in VDAART showed that lower PGE2 and higher TXA2 eicosanoids at age 3 years associated with an increased risk at 6 years (P < FDR5%). CONCLUSIONS: This study suggests that early life perturbations in the eicosanoid metabolism are present before the onset of atopic disease in childhood, which provides pathophysiological insight in the inception of atopic diseases.


Subject(s)
Asthma , Dermatitis, Atopic , Eicosanoids , Humans , Eicosanoids/urine , Female , Child, Preschool , Male , Infant , Dermatitis, Atopic/urine , Dermatitis, Atopic/epidemiology , Asthma/urine , Asthma/epidemiology , Biomarkers/urine , Risk Factors , Child
10.
Pediatr Allergy Immunol ; 35(6): e14184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924159

ABSTRACT

Asthma is the most common chronic disease in childhood affecting the daily lives of many patients despite current treatment regimens. Therefore, the need for new therapeutic approaches is evident, where a primary prevention strategy is the ultimate goal. Studies of children born to mothers in farming environments have shown a lower risk of respiratory infections and asthma development. Already at birth, these newborns have demonstrated accelerated maturation and upregulation of host defense immune functions suggesting a prenatal transplacental training of the innate immune system through maternal microbial exposure. This mechanism could possibly be utilized to help prevent both respiratory infections and asthma in young children. Human studies exploring the potential preventative effects of pregnancy bacterial lysate treatment on asthma and respiratory infections are lacking, however, this has been studied in experimental studies using mice through administrations of the bacterial lysate OM-85. This review will present the current literature on the immunomodulatory effects relevant for respiratory infections and asthma in the offspring of mice treated with OM-85 throughout pregnancy. Further, the review will discuss the cellular and molecular mechanisms behind these effects. In conclusion, we found promising results of an accelerated immune competence and improved resistance to airway challenges as a result of prenatal bacterial lysate treatment that may pave the way for implementing this in human trials to prevent asthma and respiratory infections.


Subject(s)
Asthma , Disease Models, Animal , Prenatal Exposure Delayed Effects , Respiratory Tract Infections , Animals , Asthma/prevention & control , Asthma/immunology , Pregnancy , Female , Humans , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/immunology , Mice , Prenatal Exposure Delayed Effects/immunology , Cell Extracts/therapeutic use , Bacterial Lysates
11.
Eur Respir J ; 64(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38811044

ABSTRACT

BACKGROUND: High body mass index (BMI) is an established risk factor for asthma, but the underlying mechanisms remain unclear. OBJECTIVE: To increase understanding of the BMI-asthma relationship by studying the association between genetic predisposition to higher BMI and asthma, infections and other asthma traits during childhood. METHODS: Data were obtained from the two ongoing Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) mother-child cohorts. Polygenic risk scores for adult BMI were calculated for each child. Replication was done in the large-scale register-based Integrative Psychiatric Research (iPSYCH) cohort using data on hospitalisation for asthma and infections. RESULTS: In the COPSAC cohorts (n=974), the adult BMI polygenic risk score was significantly associated with lower respiratory tract infections (incidence rate ratio (IRR) 1.20, 95% CI 1.08-1.33, false discovery rate p-value (pFDR)=0.005) at age 0-3 years and episodes of severe wheeze (IRR 1.30, 95% CI 1.06-1.60, pFDR=0.04) at age 0-6 years. Lower respiratory tract infections partly mediated the association between the adult BMI polygenic risk score and severe wheeze (proportion mediated: 0.59, 95% CI 0.28-2.24, p-value associated with the average causal mediation effect (pACME)=2e-16). In contrast, these associations were not mediated through the child's current BMI and the polygenic risk score was not associated with an asthma diagnosis or reduced lung function up to age 18 years. The associations were replicated in iPSYCH (n=114 283), where the adult BMI polygenic risk score significantly increased the risk of hospitalisations for lower respiratory tract infections and wheeze or asthma throughout childhood to age 18 years. CONCLUSION: Children with genetic predisposition to higher BMI had increased risk of lower respiratory tract infections and severe wheeze, independent of the child's current BMI. These results shed further light on the complex relationship between body mass BMI and asthma.


Subject(s)
Asthma , Body Mass Index , Genetic Predisposition to Disease , Respiratory Sounds , Respiratory Tract Infections , Humans , Asthma/genetics , Asthma/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/genetics , Female , Male , Respiratory Sounds/genetics , Child, Preschool , Child , Denmark/epidemiology , Infant , Risk Factors , Prospective Studies , Adult , Infant, Newborn , Multifactorial Inheritance , Hospitalization , Adolescent
12.
Metabolomics ; 20(3): 50, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722393

ABSTRACT

INTRODUCTION: Analysis of time-resolved postprandial metabolomics data can improve our understanding of the human metabolism by revealing similarities and differences in postprandial responses of individuals. Traditional data analysis methods often rely on data summaries or univariate approaches focusing on one metabolite at a time. OBJECTIVES: Our goal is to provide a comprehensive picture in terms of the changes in the human metabolism in response to a meal challenge test, by revealing static and dynamic markers of phenotypes, i.e., subject stratifications, related clusters of metabolites, and their temporal profiles. METHODS: We analyze Nuclear Magnetic Resonance (NMR) spectroscopy measurements of plasma samples collected during a meal challenge test from 299 individuals from the COPSAC2000 cohort using a Nightingale NMR panel at the fasting and postprandial states (15, 30, 60, 90, 120, 150, 240 min). We investigate the postprandial dynamics of the metabolism as reflected in the dynamic behaviour of the measured metabolites. The data is arranged as a three-way array: subjects by metabolites by time. We analyze the fasting state data to reveal static patterns of subject group differences using principal component analysis (PCA), and fasting state-corrected postprandial data using the CANDECOMP/PARAFAC (CP) tensor factorization to reveal dynamic markers of group differences. RESULTS: Our analysis reveals dynamic markers consisting of certain metabolite groups and their temporal profiles showing differences among males according to their body mass index (BMI) in response to the meal challenge. We also show that certain lipoproteins relate to the group difference differently in the fasting vs. dynamic state. Furthermore, while similar dynamic patterns are observed in males and females, the BMI-related group difference is observed only in males in the dynamic state. CONCLUSION: The CP model is an effective approach to analyze time-resolved postprandial metabolomics data, and provides a compact but a comprehensive summary of the postprandial data revealing replicable and interpretable dynamic markers crucial to advance our understanding of changes in the metabolism in response to a meal challenge.


Subject(s)
Metabolomics , Postprandial Period , Humans , Postprandial Period/physiology , Male , Female , Metabolomics/methods , Adult , Fasting/metabolism , Principal Component Analysis , Magnetic Resonance Spectroscopy/methods , Middle Aged , Data Analysis , Metabolome/physiology
13.
Metabolites ; 14(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38786755

ABSTRACT

Metabolomics has gained much attention due to its potential to reveal molecular disease mechanisms and present viable biomarkers. This work uses a panel of untargeted serum metabolomes from 602 children from the COPSAC2010 mother-child cohort. The annotated part of the metabolome consists of 517 chemical compounds curated using automated procedures. We created a filtering method for the quantified metabolites using predicted quantitative structure-bioactivity relationships for the Tox21 database on nuclear receptors and stress response in cell lines. The metabolites measured in the children's serums are predicted to affect specific targeted models, known for their significance in inflammation, immune function, and health outcomes. The targets from Tox21 have been used as targets with quantitative structure-activity relationships (QSARs). They were trained for ~7000 structures, saved as models, and then applied to the annotated metabolites to predict their potential bioactivities. The models were selected based on strict accuracy criteria surpassing random effects. After application, 52 metabolites showed potential bioactivity based on structural similarity with known active compounds from the Tox21 set. The filtered compounds were subsequently used and weighted by their bioactive potential to show an association with early childhood hs-CRP levels at six months in a linear model supporting a physiological adverse effect on systemic low-grade inflammation.

14.
J Allergy Clin Immunol Pract ; 12(8): 2056-2065.e10, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38609018

ABSTRACT

BACKGROUND: Early life respiratory tract infections have been linked to the development of asthma, but studies on the burden and subtypes of common infections in asthma development are sparse. OBJECTIVE: To examine the association between burden of early life infections, including subtypes, with the risk of asthma from age 3 to 10 years and lung function at age 10 years. METHODS: We included 662 children from the Copenhagen Prospective Studies on Asthma in Childhood 2010 birth cohort, for whom infections such as colds, acute tonsillitis, acute otitis media, pneumonia, gastroenteritis, and fever were registered prospectively in daily diaries at age 0 to 3 years and asthma was diagnosed longitudinally from age 3 to 10 years. The association between the burden of infection and subtypes and risk of asthma was analyzed by generalized estimating equations. RESULTS: The children experienced a median of 16 infections (interquartile range, 12-23 infections) at age 0 to 3 years. Children with a high burden of infections (above the median) had an increased risk of asthma at age 3 to 10 years (adjusted odds ratio = 3.61; 95% CI, 2.39-5.45; P < .001), which was driven by colds, pneumonia, gastroenteritis, and fever episodes (P < .05) but not by acute otitis media and tonsillitis. Lower lung function measures at age 10 years were associated with the burden of pneumonia but not the overall infection burden. The association between colds and the risk of asthma was significantly higher in children with allergic rhinitis at age 6 years (P interaction = .032). CONCLUSION: A high burden of early life infections in terms of colds, pneumonia, gastroenteritis, and fever is associated with an increased risk of developing asthma, particularly in children with respiratory allergy. Strategies to diminish these early life infections may offer a path for the primary prevention of childhood asthma.


Subject(s)
Asthma , Respiratory Tract Infections , Humans , Asthma/epidemiology , Child, Preschool , Child , Male , Female , Respiratory Tract Infections/epidemiology , Denmark/epidemiology , Prospective Studies , Infant , Infant, Newborn , Risk Factors , Risk
16.
Am J Clin Nutr ; 119(4): 960-968, 2024 04.
Article in English | MEDLINE | ID: mdl-38569788

ABSTRACT

BACKGROUND: We previously reported that children of mothers who received fish oil supplementation during pregnancy had higher body mass index [BMI (in kg/m2)] at 6 y of age as well as a concomitant increase in fat-, muscle, and bone mass, but no difference in fat percentage. OBJECTIVES: Here, we report follow-up at age 10 y including assessment of metabolic health. METHODS: This is a follow-up analysis of a randomized clinical trial conducted among 736 pregnant females and their offspring participating in the Copenhagen Prospective Studies on Asthma in Childhood mother-child cohort. The intervention was 2.4 g n-3 (ω-3) Long-Chain PolyUnsaturated Fatty Acid (n-3 LCPUFA) or control daily from pregnancy week 24 until 1 wk after birth. Outcomes were anthropometric measurements, body composition from Bioelectrical Impedance Analysis, blood pressure, concentrations of triglycerides, cholesterol, glucose, and C-peptide from fasting blood samples, and a metabolic syndrome score was calculated. Anthropometric measurements and body composition were prespecified secondary endpoints of the n-3 LCPUFA trial, and others were exploratory. RESULTS: Children in the n-3 LCPUFA group had a higher mean BMI at age 10 year compared to the control group: 17.4 (SD: 2.44) compared with 16.9 (2.28); P = 0.020 and a higher odds ratio of having overweight (odds ratio: 1.53; 95% CI: 1.01, 2.33; P = 0.047). This corresponded to differences in body composition in terms of increased lean mass (0.49 kg; 95% CI: -0.20, 1.14; P = 0.17), fat mass (0.49 kg; 95% CI: -0.03, 1.01; P = 0.06), and fat percent (0.74%; 95% CI: -0.01, 1.49; P = 0.053) compared to the control group. Children in the n-3 LCPUFA group had a higher metabolic syndrome score compared to the control (mean difference: 0.19; 95% CI: -0.02, 0.39; P = 0.053). CONCLUSIONS: In this randomized clinical trial, children of mothers receiving n-3 LCPUFA supplementation had increased BMI at age 10 y, increased risk of being overweight, and a tendency of increased fat percentage and higher metabolic syndrome score. These findings suggest potential adverse health effects from n-3 LCPUFA supplementation during pregnancy and need to be replicated in future independent studies. This trial was registered at clinicaltrials.gov as NCT00798226.


Subject(s)
Fish Oils , Metabolic Syndrome , Pregnancy , Female , Humans , Child , Overweight , Prospective Studies , Dietary Supplements
18.
medRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38496582

ABSTRACT

Despite the high prevalence of neurodevelopmental disorders, there is a notable gap in clinical studies exploring the impact of maternal diet during pregnancy on child neurodevelopment. This observational clinical study examined the association between pregnancy dietary patterns and neurodevelopmental disorders, as well as their symptoms, in a prospective cohort of 10-year-old children (n=508). Data-driven dietary patterns were derived from self-reported food frequency questionnaires. A Western dietary pattern in pregnancy (per SD change) was significantly associated with attention-deficit / hyperactivity disorder (ADHD) (OR 1.66 [1.21 - 2.27], p=0.002) and autism diagnosis (OR 2.22 [1.33 - 3.74], p=0.002) and associated symptoms (p<0.001). Findings for ADHD were validated in three large (n=59725, n=656, n=348), independent mother-child cohorts. Objective blood metabolome modelling at 24 weeks gestation identified 15 causally mediating metabolites which significantly improved ADHD prediction in external validation. Temporal analyses across five blood metabolome timepoints in two independent mother-child cohorts revealed that the association of Western dietary pattern metabolite scores with neurodevelopmental outcomes was consistently significant in early to mid-pregnancy, independent of later child timepoints. These findings underscore the importance of early intervention and provide robust evidence for targeted prenatal dietary interventions to prevent neurodevelopmental disorders in children.

19.
BMC Bioinformatics ; 25(1): 94, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438850

ABSTRACT

BACKGROUND: Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data. RESULTS: We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups. CONCLUSIONS: Our experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis.


Subject(s)
Medicine , Metabolomics , Humans , Computer Simulation , Data Analysis , Health Status
20.
Metabolites ; 14(3)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38535296

ABSTRACT

Vertical transmission of metabolic constituents from mother to child contributes to the manifestation of disease phenotypes in early life. This study probes the vertical transmission of metabolites from mothers to offspring by utilizing machine learning techniques to differentiate between true mother-child dyads and randomly paired non-dyads. Employing random forests (RF), light gradient boosting machine (LGBM), and logistic regression (Elasticnet) models, we analyzed metabolite concentration discrepancies in mother-child pairs, with maternal plasma sampled at 24 weeks of gestation and children's plasma at 6 months. The propensity of vertical transfer was quantified, reflecting the likelihood of accurate mother-child matching. Our findings were substantiated against an external test set and further verified through statistical tests, while the models were explained using permutation importance and SHapley Additive exPlanations (SHAP). The best model was achieved using RF, while xenobiotics were shown to be highly relevant in transfer. The study reaffirms the transmission of certain metabolites, such as perfluorooctanoic acid (PFOA), but also reveals additional insights into the maternal influence on the child's metabolome. We also discuss the multifaceted nature of vertical transfer. These machine learning-driven insights complement conventional epidemiological findings and offer a novel perspective on using machine learning as a methodology for understanding metabolic interactions.

SELECTION OF CITATIONS
SEARCH DETAIL