Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Autophagy ; : 1-12, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38566318

ABSTRACT

HIV-1 entry into CD4+ T lymphocytes relies on the viral and cellular membranes' fusion, leading to viral capsid delivery in the target cell cytoplasm. Atg8/LC3B conjugation to lipids, process named Atg8ylation mainly studied in the context of macroautophagy/autophagy, occurs transiently in the early stages of HIV-1 replication in CD4+ T lymphocytes. Despite numerous studies investigating the HIV-1-autophagy interplays, the Atg8ylation impact in these early stages of infection remains unknown. Here we found that HIV-1 exposure leads to the rapid LC3B enrichment toward the target cell plasma membrane, in close proximity with the incoming viral particles. Furthermore, we demonstrated that Atg8ylation is a key event facilitating HIV-1 entry in target CD4+ T cells. Interestingly, this effect is independent of canonical autophagy as ATG13 silencing does not prevent HIV-1 entry. Together, our results provide an unconventional role of LC3B conjugation subverted by HIV-1 to achieve a critical step of its replication cycle.Abbreviations: BafA1: bafilomycin A1; BlaM: beta-lactamase; CD4+ TL: CD4+ T lymphocytes; PtdIns3K-BECN1 complex: BECN1-containing class III phosphatidylinositol 3-kinase complex; Env: HIV-1 envelope glycoproteins; HIV-1: type 1 human immunodeficiency virus; PM: plasma membrane; PtdIns3P: phosphatidylinositol-3-phosphate; VLP: virus-like particle.

2.
Viruses ; 13(11)2021 11 04.
Article in English | MEDLINE | ID: mdl-34835027

ABSTRACT

Paradigm shifts throughout the history of microbiology have typically been ignored, or met with skepticism and resistance, by the scientific community. This has been especially true in the field of virology, where the discovery of a "contagium vivum fluidum", or infectious fluid remaining after excluding bacteria by filtration, was initially ignored because it did not coincide with the established view of microorganisms. Subsequent studies on such infectious agents, eventually termed "viruses", were met with skepticism. However, after an abundance of proof accumulated, viruses were eventually acknowledged as defined microbiological entities. Next, the proposed role of viruses in oncogenesis in animals was disputed, as was the unique mechanism of genome replication by reverse transcription of RNA by the retroviruses. This same pattern of skepticism holds true for the prediction of the existence of retroviral "antisense" transcripts and genes. From the time of their discovery, it was thought that retroviruses encoded proteins on only one strand of proviral DNA. However, in 1988, it was predicted that human immunodeficiency virus type 1 (HIV-1), and other retroviruses, express an antisense protein encoded on the DNA strand opposite that encoding the known viral proteins. Confirmation came quickly with the characterization of the antisense protein, HBZ, of the human T-cell leukemia virus type 1 (HTLV-1), and the finding that both the protein and its antisense mRNA transcript play key roles in viral replication and pathogenesis. However, acceptance of the existence, and potential importance, of a corresponding antisense transcript and protein (ASP) in HIV-1 infection and pathogenesis has lagged, despite gradually accumulating theoretical and experimental evidence. The most striking theoretical evidence is the finding that asp is highly conserved in group M viruses and correlates exclusively with subtypes, or clades, responsible for the AIDS pandemic. This review outlines the history of the major shifts in thought pertaining to the nature and characteristics of viruses, and in particular retroviruses, and details the development of the hypothesis that retroviral antisense transcripts and genes exist. We conclude that there is a need to accelerate studies on ASP, and its transcript(s), with the view that both may be important, and overlooked, targets in anti-HIV therapeutic and vaccine strategies.


Subject(s)
RNA, Antisense/genetics , RNA, Messenger/genetics , Retroviridae Proteins/genetics , Retroviridae/genetics , Carcinogenesis/genetics , Genome, Viral , HIV-1/genetics , HIV-1/pathogenicity , HIV-1/physiology , History, 20th Century , History, 21st Century , Human Immunodeficiency Virus Proteins/genetics , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/pathogenicity , Human T-lymphotropic virus 1/physiology , Humans , Open Reading Frames , Retroviridae/pathogenicity , Retroviridae/physiology , Transcription, Genetic , Viral Envelope Proteins/genetics , Virology/history , Virus Replication
3.
Front Microbiol ; 12: 682603, 2021.
Article in English | MEDLINE | ID: mdl-34335504

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that emerged in late 2019, is the etiologic agent of the current "coronavirus disease 2019" (COVID-19) pandemic, which has serious health implications and a significant global economic impact. Of the seven human coronaviruses, all of which have a zoonotic origin, the pandemic SARS-CoV-2, is the third emerging coronavirus, in the 21st century, highly pathogenic to the human population. Previous human coronavirus outbreaks (SARS-CoV-1 and MERS-CoV) have already provided several valuable information on some of the common molecular and cellular mechanisms of coronavirus infections as well as their origin. However, to meet the new challenge caused by the SARS-CoV-2, a detailed understanding of the biological specificities, as well as knowledge of the origin are crucial to provide information on viral pathogenicity, transmission and epidemiology, and to enable strategies for therapeutic interventions and drug discovery. Therefore, in this review, we summarize the current advances in SARS-CoV-2 knowledges, in light of pre-existing information of other recently emerging coronaviruses. We depict the specificity of the immune response of wild bats and discuss current knowledge of the genetic diversity of bat-hosted coronaviruses that promotes viral genome expansion (accessory gene acquisition). In addition, we describe the basic virology of coronaviruses with a special focus SARS-CoV-2. Finally, we highlight, in detail, the current knowledge of genes and accessory proteins which we postulate to be the major keys to promote virus adaptation to specific hosts (bat and human), to contribute to the suppression of immune responses, as well as to pathogenicity.

5.
Front Microbiol ; 11: 20, 2020.
Article in English | MEDLINE | ID: mdl-32117090

ABSTRACT

The existence of an antisense Open Reading Frame (ORF) that encodes a putative AntiSense Protein (ASP) on the proviral genome of Human Immunodeficiency Virus type 1 (HIV-1) was a source of debate for 30 years. During the last years, some progresses have been made to characterize the cellular immune response against ASP in HIV-1 seropositive patients. However, no tools were available for the detection of antibodies to ASP in the plasma of HIV-1-infected patients during the natural course of the infection. The aim of our study was to develop a Luciferase Immuno-Precipitation System (LIPS) to monitor the quantitative detection of ASP-specific antibodies in the plasma of HIV-1-infected patients [antiretroviral therapy (ART) naive-patients, patients under ART and HIV-1 controllers], patients who discontinued antiretroviral drugs (ARV). We further used this approach to delineate the epitopes of ASP targeted by antibodies. Antibodies directed against ASP were detected in 3 out of 19 patients who discontinued ARV (15%) and in 1 out of 10 ART-naive patients (10%), but were neither detected in HIV-1 infected patients under ART nor in HIV-1 controllers. Individual variations in levels of ASP-specific antibodies were detected overtime. Both the conserved prolin-rich motif and the core 60-189 region of ASP were found to be essential for antibody recognition in the four patients tested positive for anti-ASP antibodies, who were all untreated at the time of sampling. Moreover, for two of these patients, increased levels of ASP-specific antibodies were observed concomitantly to viremia declines. Overall, our method may represent a useful tool to detect a humoral response to ASP in HIV-1-infected patients, which allowed us to confirm the expression of ASP during the course of HIV-1 infection. Further studies will be needed to fully characterize the humoral response to ASP in HIV-1-infected patients.

6.
Front Microbiol ; 11: 625941, 2020.
Article in English | MEDLINE | ID: mdl-33510738

ABSTRACT

It was first predicted in 1988 that there may be an Open Reading Frame (ORF) on the negative strand of the Human Immunodeficiency Virus type 1 (HIV-1) genome that could encode a protein named AntiSense Protein (ASP). In spite of some controversy, reports began to emerge some years later describing the detection of HIV-1 antisense transcripts, the presence of ASP in transfected and infected cells, and the existence of an immune response targeting ASP. Recently, it was established that the asp gene is exclusively conserved within the pandemic group M of HIV-1. In this review, we summarize the latest findings on HIV-1 antisense transcripts and ASP, and we discuss their potential functions in HIV-1 infection together with the role played by antisense transcripts and ASPs in some other viruses. Finally, we suggest pathways raised by the study of antisense transcripts and ASPs that may warrant exploration in the future.

7.
Curr HIV Res ; 17(3): 148-160, 2019.
Article in English | MEDLINE | ID: mdl-31433761

ABSTRACT

Uracil-DNA glycosylase-2 (UNG2) is a DNA repair protein that removes uracil from single and double-stranded DNA through a basic excision repair process. UNG2 is packaged into new virions by interaction with integrase (IN) and is needed during the early stages of the replication cycle. UNG2 appears to play both a positive and negative role during HIV-1 replication; UNG2 improves the fidelity of reverse transcription but the nuclear isoform of UNG2 participates in the degradation of cDNA and the persistence of the cellular genome by repairing its uracil mismatches. In addition, UNG2 is neutralized by Vpr, which redirects it to the proteasome for degradation, suggesting that UNG2 may be a new cellular restriction factor. So far, we have not understood why HIV-1 imports UNG2 via its IN and why it causes degradation of endogenous UNG2 by redirecting it to the proteasome via Vpr. In this review, we propose to discuss the ambiguous role of UNG2 during the HIV-1 replication cycle.


Subject(s)
HIV Infections/virology , HIV-1/enzymology , HIV-1/genetics , Uracil-DNA Glycosidase/metabolism , DNA Mismatch Repair , DNA Repair , HIV Infections/therapy , Humans , Molecular Targeted Therapy , Protein Binding , Proviruses/genetics , Structure-Activity Relationship , Uracil-DNA Glycosidase/antagonists & inhibitors , Uracil-DNA Glycosidase/chemistry , Virus Replication
8.
Antiviral Res ; 164: 162-175, 2019 04.
Article in English | MEDLINE | ID: mdl-30825471

ABSTRACT

Maturation of human immunodeficiency virus type 1 (HIV-1) particles is a key step for viral infectivity. This process can be blocked using maturation inhibitors (MIs) that affect the cleavage of the capsid-spacer peptide 1 (CA-SP1) junction. Here, we investigated the mechanisms underlying the activity of EP-39, a bevirimat (BVM) derivative with better hydrosolubility. To this aim, we selected in vitro EP-39- and BVM-resistant mutants. We found that EP-39-resistant viruses have four mutations within the CA domain (CA-A194T, CA-T200N, CA-V230I, and CA-V230A) and one in the first residue of SP1 (SP1-A1V). We also identified six mutations that confer BVM resistance (CA-A194T, CA-L231F, CA-L231M, SP1-A1V, SP1-S5N and SP1-V7A). To characterize the EP-39 and BVM-resistant mutants, we studied EP-39 effects on mutant virus replication and performed a biochemical analysis with both MIs. We observed common and distinct characteristics, suggesting that, although EP-39 and BVM share the same chemical skeleton, they could interact in a different way with the Gag polyprotein precursor (Pr55Gag). Using an in silico approach, we observed that EP-39 and BVM present different predicted positions on the hexameric crystal structure of the CACTD-SP1 Gag fragment. To clearly understand the relationship between assembly and maturation, we investigated the impact of all identified mutations on virus assembly by expressing Pr55Gag mutants. Finally, using NMR, we have shown that the interaction of EP-39 with a peptide carrying the SP1-A1V mutation (CA-SP1(A1V)-NC) is almost suppressed in comparison with the wild type peptide. These results suggest that EP-39 and BVM could interact differently with the Pr55Gag lattice and that the mutation of the first SP1 residue induces a loss of interaction between Pr55Gag and EP-39.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral/genetics , HIV-1/drug effects , HIV-1/genetics , Succinates/chemistry , Succinates/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology , HIV-1/physiology , Humans , Jurkat Cells , Molecular Docking Simulation , Mutation , Virus Assembly/drug effects , Virus Replication/drug effects
9.
J Virol ; 93(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30463980

ABSTRACT

Beyond their role in cellular RNA metabolism, DExD/H-box RNA helicases are hijacked by various RNA viruses in order to assist replication of the viral genome. Here, we identify the DExH-box RNA helicase 9 (DHX9) as a binding partner of chikungunya virus (CHIKV) nsP3 mainly interacting with the C-terminal hypervariable domain. We show that during early CHIKV infection, DHX9 is recruited to the plasma membrane, where it associates with replication complexes. At a later stage of infection, DHX9 is, however, degraded through a proteasome-dependent mechanism. Using silencing experiments, we demonstrate that while DHX9 negatively controls viral RNA synthesis, it is also required for optimal mature nonstructural protein translation. Altogether, this study identifies DHX9 as a novel cofactor for CHIKV replication in human cells that differently regulates the various steps of CHIKV life cycle and may therefore mediate a switch in RNA usage from translation to replication during the earliest steps of CHIKV replication.IMPORTANCE The reemergence of chikungunya virus (CHIKV), an alphavirus that is transmitted to humans by Aedes mosquitoes, is a serious global health threat. In the absence of effective antiviral drugs, CHIKV infection has a significant impact on human health, with chronic arthritis being one of the most serious complications. The molecular understanding of host-virus interactions is a prerequisite to the development of targeted therapeutics capable to interrupt viral replication and transmission. Here, we identify the host cell DHX9 DExH-Box helicase as an essential cofactor for early CHIKV genome translation. We demonstrate that CHIKV nsP3 protein acts as a key factor for DHX9 recruitment to replication complexes. Finally, we establish that DHX9 behaves as a switch that regulates the progression of the viral cycle from translation to genome replication. This study might therefore have a significant impact on the development of antiviral strategies.


Subject(s)
Chikungunya virus/metabolism , DEAD-box RNA Helicases/metabolism , Neoplasm Proteins/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Chikungunya Fever/virology , Chikungunya virus/physiology , Chlorocebus aethiops , DEAD-box RNA Helicases/genetics , DNA Helicases/metabolism , Genomics , HEK293 Cells , HeLa Cells , Humans , Neoplasm Proteins/genetics , Protein Biosynthesis/genetics , RNA Helicases/metabolism , RNA, Viral/metabolism , Vero Cells , Virus Replication/genetics , Virus Replication/physiology
10.
J Biol Chem ; 292(45): 18672-18681, 2017 11 10.
Article in English | MEDLINE | ID: mdl-28928217

ABSTRACT

Autophagy-related proteins such as Beclin-1 are involved in an array of complex processes, including antiviral responses, and may also modulate the efficiency of gene therapy viral vectors. The Tat-Beclin-1 (TB1) peptide has been reported as an autophagy-inducing factor inhibiting the replication of pathogens such as HIV, type 1 (HIV-1). However, autophagy-related proteins are also essential for the early steps of HIV-1 infection. Therefore, we examined the effects of the Beclin-1 evolutionarily conserved domain in TB1 on viral transduction and autophagy in single-round HIV infection or with nonreplicative HIV-1-derived lentiviral vectors. TB1 enhanced transduction with various pseudotypes but without inducing the autophagy process. TB1 augmented the transduction of human CD34+ hematopoietic stem/progenitor cells while maintaining their capacity to engraft in vivo into humanized mice. TB1 was as effective as other transduction additives and functioned by enhancing the adhesion and fusion of viral particles with target cells but not their aggregation. We also found that the N-terminal L1 loop was critical for TB1 transduction-enhancing activity. Interestingly, the Tat-Beclin-2 (TB2) peptide, derived from the human Beclin-2 protein, was even more potent than TB1 in promoting viral transduction and infection. Taken together, our findings suggest that the TB1 and TB2 peptides enhance the viral entry step. Tat-Beclin peptides therefore represent a new family of viral transduction enhancers for potential use in gene therapy.


Subject(s)
Autophagy , Beclin-1/metabolism , HIV-1/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Lentivirus/physiology , Virus Internalization , tat Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Sequence , Animals , Beclin-1/chemistry , Beclin-1/genetics , Cell Line, Transformed , Cell Line, Tumor , Cells, Cultured , Conserved Sequence , Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/virology , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Mice, Transgenic , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Specific Pathogen-Free Organisms , Up-Regulation , tat Gene Products, Human Immunodeficiency Virus/chemistry , tat Gene Products, Human Immunodeficiency Virus/genetics
11.
Infect Genet Evol ; 32: 161-4, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25791932

ABSTRACT

For the third time, teams belonging to the "Montpellier Infectious Diseases" network in the Rabelais BioHealth Cluster held their annual meeting on the 27th and 28th of November in Montpellier, France. While the 2012 meeting was focused on the cooperation between the local force tasks in biomedical and medical chemistry and presented the interdisciplinary research programs designed to fight against virus, bacteria and parasites, the 2014 edition of the meeting was focused on the translational research in infectious diseases and highlighted the bench-to-clinic strategies designed by academic and private research groups in the Montpellier area.


Subject(s)
Communicable Diseases/genetics , Bacterial Infections/epidemiology , Bacterial Infections/genetics , Bacterial Infections/microbiology , Communicable Diseases/drug therapy , Communicable Diseases/epidemiology , Communicable Diseases, Emerging/epidemiology , Congresses as Topic , Drug Design , Humans , Parasitic Diseases/epidemiology , Parasitic Diseases/genetics , Parasitic Diseases/parasitology , Translational Research, Biomedical , Virus Diseases/epidemiology , Virus Diseases/genetics , Virus Diseases/virology
12.
Virology ; 476: 1-10, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25496825

ABSTRACT

Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses.


Subject(s)
Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/physiology , Keratinocytes/immunology , Keratinocytes/virology , Virus Replication , Aedes , Animals , Cells, Cultured , Chikungunya Fever/genetics , Chikungunya virus/genetics , HEK293 Cells , Host-Pathogen Interactions , Humans , Immunity, Innate , Interferons/genetics , Interferons/immunology , Virus Internalization
13.
Virol J ; 11: 214, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25471526

ABSTRACT

BACKGROUND: In HIV-1 infected patients, production of interleukin-10 (IL-10), a highly immunosuppressive cytokine, is associated with progression of infection toward AIDS. HIV-1 Tat protein, by interacting with TLR4-MD2 at the membrane level, induces IL-10 production by primary human monocytes and macrophages. In the present study we evaluated the effect of the TLR4 antagonist Eritoran tetrasodium (E5564) on HIV-1 Tat-induced IL-10 production. FINDINGS: Here, we confirm that the recombinant HIV-1 Tat protein and the GST-Tat 1-45 fusion protein efficiently stimulate IL-10 production by primary monocytes and macrophages and that this stimulation is inhibited by blocking anti-TLR4 mAbs. We show that a similar inhibition is observed by preincubating the cells with the TLR4 antagonist E5564. CONCLUSION: This study provides compelling data showing for the first time that the TLR4 antagonist E5564 inhibits the immunosuppressive cytokine IL-10 production by primary human monocytes and macrophages incubated in the presence of HIV-1 Tat protein.


Subject(s)
Gene Products, tat/metabolism , HIV-1/immunology , Immunologic Factors/pharmacology , Interleukin-10/antagonists & inhibitors , Lipid A/analogs & derivatives , Humans , Lipid A/pharmacology , Macrophages/immunology , Macrophages/virology , Monocytes/immunology , Monocytes/virology , Toll-Like Receptor 4/metabolism
14.
Nucleic Acids Res ; 42(3): 1698-710, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24178031

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) Vpr protein binds to the cellular uracil-DNA glycosylase UNG2 and induces its degradation through the assembly with the DDB1-CUL4 ubiquitin ligase complex. This interaction counteracts the antiviral activity exerted by UNG2 on HIV-1 gene transcription, as previously reported by us. In this work, we show that Vpr expression in the context of HIV-1 infection markedly decreases UNG2 expression in transformed or primary CD4(+) T lymphocytes. We demonstrate for the first time that Vpr-UNG2 interaction significantly impairs the uracil excision activity of infected cells. The loss of uracil excision activity coincides with a significant accumulation of uracilated bases in the genome of infected cells without changes in cell division. Although UNG2 expression and uracil-DNA glycosylase activity are recovered after the peak of retroviral replication, the mutagenic effect of transient DNA uracilation in cycling cells should be taken into account. Therefore, the possible consequences of Vpr-mediated temporary depletion of endogenous nuclear UNG2 and subsequent alteration of the genomic integrity of infected cells need to be evaluated in the physiopathogenesis of HIV infection.


Subject(s)
DNA Glycosylases/metabolism , DNA Repair , HIV-1/physiology , vpr Gene Products, Human Immunodeficiency Virus/metabolism , CD4-Positive T-Lymphocytes/enzymology , CD4-Positive T-Lymphocytes/virology , Cell Cycle , Cell Line , Cell Survival , DNA/chemistry , DNA/metabolism , Enzyme Assays/methods , Humans , Uracil/metabolism
15.
Retrovirology ; 10: 157, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24344931

ABSTRACT

BACKGROUND: Host cell proteins, including cellular kinases, are embarked into intact HIV-1 particles. We have previously shown that the Cα catalytic subunit of cAMP-dependent protein kinase is packaged within HIV-1 virions as an enzymatically active form able to phosphorylate a synthetic substrate in vitro (Cartier et al. J. Biol. Chem. 278:35211 (2003)). The present study was conceived to investigate the contribution of HIV-1-associated PKA to the retroviral life cycle. RESULTS: NL4.3 viruses were produced from cells cultured in the presence of PKA inhibitors H89 (H89-NL4.3) or Myr-PKI (PKI-NL4.3) and analyzed for viral replication. Despite being mature and normally assembled, and containing expected levels of genomic RNA and RT enzymatic activity, such viruses showed poor infectivity. Indeed, infection generated reduced amounts of strong-strop minus strand DNA, while incoming RNA levels in target cells were unaffected. Decreased cDNA synthesis was also evidenced in intact H89-NL4.3 and PKI-NL4.3 cell free particles using endogenous reverse transcription (ERT) experiments. Moreover, similar defects were reproduced when wild type NL4.3 particles preincubated with PKA inhibitors were subjected to ERT reactions. CONCLUSIONS: Altogether, our results indicate that HIV-1-associated PKA is required for early reverse transcription of the retroviral genome both in cell free intact viruses and in target cells. Accordingly, virus-associated PKA behaves as a cofactor of an intraviral process required for optimal reverse transcription and for early post-entry events.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , HIV-1/physiology , Host-Pathogen Interactions , Reverse Transcription , Virus Integration , Cell Line , Humans
16.
J Virol Methods ; 193(1): 55-61, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23669102

ABSTRACT

Mosquitoes-borne viruses are a major threat for human populations. Among them, chikungunya virus (CHIKV) and dengue virus (DENV) cause thousands of cases worldwide. The recent propagation of mosquito vectors competent to transmit these viruses to temperate areas increases their potential impact on susceptible human populations. The development of sensitive methods allowing the detection and isolation of infectious viruses is of crucial interest for determination of virus contamination in humans and in competent mosquito vectors. However, simple and rapid method allowing the capture of infectious CHIKV and DENV from samples with low viral titers useful for further genetic and functional characterization of circulating strains is lacking. The present study reports a fast and sensitive isolation technique based on viral particles adsorption on magnetic beads coated with anionic polymer, poly(methyl vinyl ether-maleic anhydrate) and suitable for isolation of infectious CHIKV and DENV from the four serotypes. Starting from quite reduced biological material, this method was accurate to combine with conventional detection techniques, including qRT-PCR and immunoblotting and allowed isolation of infectious particles without resorting to a step of cultivation. The use of polymer-coated magnetic beads is therefore of high interest for rapid detection and isolation of CHIKV and DENV from samples with reduced viral loads and represents an accurate approach for the surveillance of mosquito vector in area at risk for arbovirus outbreaks.


Subject(s)
Alphavirus Infections/virology , Chikungunya virus/isolation & purification , Culicidae/virology , Dengue Virus/isolation & purification , Dengue/virology , Virology/methods , Alphavirus Infections/diagnosis , Animals , Dengue/diagnosis , Humans , Magnetics , Microspheres , Polymers , Sensitivity and Specificity , Specimen Handling/methods , Time Factors
17.
Eur J Med Chem ; 62: 453-65, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23399723

ABSTRACT

Bevirimat (2), the first-in-class HIV-1 maturation inhibitor, shows a low efficacy due essentially to the natural polymorphism of its target, the CA-SP1 junction. Moreover, its low hydrosolubility makes it difficult to study its interaction with the CA-SP1 junction. We have synthesized new derivatives of bevirimat by adding different hydrophilic substituents at the C-28 position to improve their hydrosolubility and perform the structural study of a complex by NMR. Synthesis of the new derivatives, the effect of substituents at the C-28 position and their hydrosolubility are discussed. The ability of these molecules to inhibit viral infection and their cytotoxicity is assessed. Compared to the well-known bevirimat (2), one of our compounds (16) shows a higher hydrosolubility associated with a 2.5 fold increase in activity, a higher selectivity index and a better antiviral profile. Moreover, for the first time a direct interaction between a derivative of bevirimat (16) and the domain CA-SP1-NC is shown by NMR. Information from this study should allow us to decipher the mechanism by which bevirimat inhibits HIV-1 maturation and how the natural polymorphism of the spacer peptide SP1 triggers resistance to inhibitors.


Subject(s)
Anti-HIV Agents/pharmacology , HIV-1/drug effects , Succinates/pharmacology , Triterpenes/pharmacology , gag Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Binding Sites/drug effects , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Microbial Sensitivity Tests , Structure-Activity Relationship , Succinates/chemical synthesis , Succinates/chemistry , Triterpenes/chemical synthesis , Triterpenes/chemistry
18.
Infect Genet Evol ; 16: 450-4, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23416259

ABSTRACT

For the second consecutive year, teams of the network "Montpellier Infectious Diseases" held their annual meeting. Whereas the 2011 meeting was focused on host-pathogen interaction and pathophysiology, the 2012 meeting was focused on the cooperation between medical and chemical sciences interdisciplinary approaches to fight against virus, bacteria and parasites. Several approaches aimed at designing new bioactive compounds were described during this meeting.


Subject(s)
Communicable Diseases/drug therapy , Animals , Anti-Infective Agents/therapeutic use , Communicable Diseases/microbiology , Communicable Diseases/parasitology , Host-Pathogen Interactions , Humans , Occupational Health , Virulence
19.
Infect Genet Evol ; 12(6): 1275-81, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22386853

ABSTRACT

BACKGROUND: The chikungunya virus (CHIKV) recently caused explosive outbreaks in Indian Ocean islands and India. During these episodes, the virus was mainly spread to humans through the bite of the mosquito Aedes albopictus. Concomitantly to the description of symptoms of an unexpected severity in infants and elderly patients, a viral genome microevolution has been highlighted, in particular consisting in the acquisition of an A226V mutation in the gene encoding envelope glycoprotein E1, which was later found to confer an increased fitness for A. albopictus. We previously decrypted the entry pathway used by CHIKV to infect human epithelial cells and showed that these mechanisms are modulated by the E1-A226V mutation. In this report we investigated the conditions for CHIKV entry into mosquito cells and we assessed the consequence of E1 gene mutation on these parameters. PRINCIPAL FINDINGS: Our main findings indicate that CHIKV infection of A. albopictus cell lines is sensitive to Bafilomycin A1 and chloroquine and to membrane cholesterol depletion. The E1-226V mutated LR-OPY1 isolate collected during the 2005 outbreak in La Réunion replicated more efficiently than the 37997 African reference strain in C6/36 cells. Moreover, the LR-OPY1 strain displayed greater membrane cholesterol dependence and was more sensitive to inhibition of endosomal pH acidification. Finally, using electron microscopy, we imaged CHIKV entry into C6/36 cells. CONCLUSIONS: Our data support that CHIKV is endocyted into A. albopictus cells and requires membrane cholesterol as well as a low-pH environment for entry. These features are modulated in some extent by the A226V mutation in the E1 gene of the LR-OPY1 isolate. Altogether, our data provide information regarding the pathways used by CHIKV to infect A. albopictus cells.


Subject(s)
Aedes/virology , Chikungunya virus/physiology , Insect Vectors/virology , Virus Internalization , Animals , Cell Line , Cell Membrane , Chikungunya virus/genetics , Chikungunya virus/metabolism , Cholesterol/metabolism , Endocytosis/physiology , Host-Pathogen Interactions , Hydrogen-Ion Concentration , Macrolides/pharmacology , Mutation , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
20.
Retrovirology ; 8: 71, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21888651

ABSTRACT

Phosphorylation is one of the major mechanisms by which the activities of protein factors can be regulated. Such regulation impacts multiple key-functions of mammalian cells, including signal transduction, nucleo-cytoplasmic shuttling, macromolecular complexes assembly, DNA binding and regulation of enzymatic activities to name a few. To ensure their capacities to replicate and propagate efficiently in their hosts, viruses may rely on the phosphorylation of viral proteins to assist diverse steps of their life cycle. It has been known for several decades that particles from diverse virus families contain some protein kinase activity. While large DNA viruses generally encode for viral kinases, RNA viruses and more precisely retroviruses have acquired the capacity to hijack the signaling machinery of the host cell and to embark cellular kinases when budding. Such property was demonstrated for HIV-1 more than a decade ago. This review summarizes the knowledge acquired in the field of HIV-1-associated kinases and discusses their possible function in the retroviral life cycle.


Subject(s)
HIV Infections/enzymology , HIV-1/physiology , Protein Kinases/metabolism , Virion/physiology , Animals , HIV Infections/genetics , HIV Infections/virology , HIV-1/enzymology , HIV-1/genetics , Humans , Protein Kinases/genetics , Virion/genetics , Virus Assembly
SELECTION OF CITATIONS
SEARCH DETAIL
...