Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 958, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302464

ABSTRACT

Macrolactones exhibit distinct conformational and configurational properties and are widely found in natural products, medicines, and agrochemicals. Up to now, the major effort for macrolactonization is directed toward identifying suitable carboxylic acid/alcohol coupling reagents to address the challenges associated with macrocyclization, wherein the stereochemistry of products is usually controlled by the substrate's inherent chirality. It remains largely unexplored in using catalysts to govern both macrolactone formation and stereochemical control. Here, we disclose a non-enzymatic organocatalytic approach to construct macrolactones bearing chiral planes from achiral substrates. Our strategy utilizes N-heterocyclic carbene (NHC) as a potent acylation catalyst that simultaneously mediates the macrocyclization and controls planar chirality during the catalytic process. Macrolactones varying in ring sizes from sixteen to twenty members are obtained with good-to-excellent yields and enantiomeric ratios. Our study shall open new avenues in accessing macrolactones with various stereogenic elements and ring structures by using readily available small-molecule catalysts.

2.
Angew Chem Int Ed Engl ; 62(45): e202310072, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37731165

ABSTRACT

The direct functionalization of inert C(sp3 )-H bonds to form carbon-carbon and carbon-heteroatom bonds offers vast potential for chemical synthesis and therefore receives increasing attention. At present, most successes come from strategies using metal catalysts/reagents or photo/electrochemical processes. The use of organocatalysis for this purpose remains scarce, especially when dealing with challenging C-H bonds such as those from simple alkanes. Here we disclose the first organocatalytic direct functionalization/acylation of inert C(sp3 )-H bonds of completely unfunctionalized alkanes. Our approach involves N-heterocyclic carbene catalyst-mediated carbonyl radical intermediate generation and coupling with simple alkanes (through the corresponding alkyl radical intermediates generated via a hydrogen atom transfer process). Unreactive C-H bonds are widely present in fossil fuel feedstocks, commercially important organic polymers, and complex molecules such as natural products. Our present study shall inspire a new avenue for quick functionalization of these molecules under the light- and metal-free catalytic conditions.

3.
Org Lett ; 22(12): 4583-4587, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32315187

ABSTRACT

An unprecedented N-demethylation of N-methyl amides has been developed by use of N-fluorobenzenesulfonimide as an oxidant with the aid of a copper catalyst. The conversion of amides to carbinolamines involves successive single-electron transfer, hydrogen-atom transfer, and hydrolysis, and is accompanied by formation of N-(phenylsulfonyl)benzenesulfonamide. Carbinolamines spontaneously decompose to N-demethylated amides and formaldehyde, because of their inherent instability.

SELECTION OF CITATIONS
SEARCH DETAIL