Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 33(20)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33690181

ABSTRACT

We report point-contact spectroscopy measurements on heavy fermion cousins CeCoIn5, Ce2PdIn8and Ce3PdIn11to systematically study the hybridization betweenfand conduction electrons. Below a temperatureT*, the spectrum of each compound exhibits an evolving Fano-like conductance shape, superimposed on a sloping background, that suggests the development of hybridization between localfand itinerant conduction electrons in the coherent heavy fermion state belowT*. We present a quantitative analysis of the conductance curves with a two-channel model to compare the tunneling process between normal metallic silver particles in our soft point-contact and heavy-fermion single crystals CeCoIn5, Ce2PdIn8and Ce3PdIn11.

2.
Sci Bull (Beijing) ; 65(16): 1349-1355, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-36659213

ABSTRACT

Spontaneous symmetry breaking has been a paradigm to describe the phase transitions in condensed matter physics. In addition to the continuous electromagnetic gauge symmetry, an unconventional superconductor can break discrete symmetries simultaneously, such as time reversal and lattice rotational symmetry. In this work we report a characteristic in-plane 2-fold behaviour of the resistive upper critical field and point-contact spectra on the superconducting semimetal PbTaSe2 with topological nodal-rings, despite its hexagonal lattice symmetry (or D3h in bulk while C3v on surface, to be precise). The 2-fold behaviour persists up to its surface upper critical field Hc2R even though bulk superconductivity has been suppressed at its bulk upper critical field Hc2HC≪Hc2R, signaling its probable surface-only electronic nematicity. In addition, we do not observe any lattice rotational symmetry breaking signal from field-angle-dependent specific heat within the resolution. It is worth noting that such surface-only electronic nematicity is in sharp contrast to the observation in the topological superconductor candidate, CuxBi2Se3, where the nematicity occurs in various bulk measurements. In combination with theory, superconducting nematicity is likely to emerge from the topological surface states of PbTaSe2, rather than the proximity effect. The issue of time reversal symmetry breaking is also addressed. Thus, our results on PbTaSe2 shed new light on possible routes to realize nematic superconductivity with nontrivial topology.

3.
Phys Rev Lett ; 120(8): 087201, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29543015

ABSTRACT

We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO_{4} as a spin glass, including no long-range magnetic order, prominent broad excitation continua, and the absence of magnetic thermal conductivity. More crucially, from the ultralow-temperature ac susceptibility measurements, we unambiguously observe frequency-dependent peaks around 0.1 K, indicating the spin-glass ground state. We suggest this conclusion holds also for its sister compound YbMgGaO_{4}, which is confirmed by the observation of spin freezing at low temperatures. We consider disorder and frustration to be the main driving force for the spin-glass phase.

SELECTION OF CITATIONS
SEARCH DETAIL