Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 9(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38248590

ABSTRACT

Analysis of pedestrians' head and lower limb injuries at the tissue level is lacking in studies of tram-pedestrian collisions. The purpose of this paper therefore to investigate the impact response process and severity of pedestrians' injuries in tram-pedestrian collisions, using the Total Human Model for Safety (THUMS) pedestrian human body model together with the tram FE model. Two full-scale tram-pedestrian dummy crash tests were performed to validate the FE model, and the total correlation and analysis (CORA) score of head acceleration yielded values of 0.840 and 0.734, confirming a strong agreement between the FE-simulated head responses and the experimental head kinematics. The effects of different tram speeds and impact angles on pedestrians' impact response injuries and the differences were further analyzed. The results indicate that direct impact of the lower limb with the tram's obstacle deflector leads to lower limb bone shaft fractures and knee tissue damage. Neck fling contributed to worsened head injury. Coup contusions were the predominant type of brain contusion, surpassing contrecoup contusions, while diffuse axonal injury was mainly concentrated in the collision-side region of the brain. Pedestrians' injuries are influenced by tram velocity and impact angle: higher tram velocities increase the risk of lower limb and head injuries. The risk of head injury for pedestrians is higher when the impact angle is negative, while lower limb injuries are more significant when the impact angle is 0°. This study provides practical guidance for enhancing tram safety and protecting pedestrians.

2.
Sci Prog ; 103(3): 36850420950158, 2020.
Article in English | MEDLINE | ID: mdl-32873183

ABSTRACT

This paper proposed a multi-layered bi-directionally corrugated plates structure (BCPS) for energy absorption. Quasi-static compression experiments and finite element method (FEM) were used to investigate the crushing performance of the multi-layered BCPS. The results showed that the multi-layered BCPS had very small initial peak crushing force, and the fluctuation of force was very small during the whole compression process. These characteristics made the multi-layered BCPS more advantageous in crashworthiness than traditional structures. It was also found that the crushing performance of the multi-layered BCPS was very sensitive to the geometrical parameters, such as the number of the cellular structures along the width nc, the number of plates nl, and the ratio of width of small square ws to width of big square wb of the pyramid cell η. Therefore, parameters optimization was carried out using the Multi-Objective Genetic Algorithm to find the best geometrical configuration of the structure. After optimization, the optimum parameters nc = 5, nl = 11 and η = 0.38 was obtained. The specific energy absorption increased by 143.76% compared with the initial configuration.

SELECTION OF CITATIONS
SEARCH DETAIL
...