Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 657: 240-249, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38039884

ABSTRACT

An electrocatalyst of single-atomic Mn sites with MnP nanoparticles (NPs) on N, P co-doped carbon substrate was constructed to enhance the catalytic activity of oxygen reduction reaction (ORR) through one-pot in situ doping-phosphatization strategy. The optimized MnSA-MnP-980℃ catalyst exhibits an excellent ORR activity in KOH electrolyte with a half-wave potential (E1/2) of 0.88 V (vs. RHE), and the ORR current density of MnSA-MnP-980℃ maintained 97.9 % for over 25000 s chronoamperometric i-t measurement. When using as the cathode, the MnSA-MnP-980℃ displays a peak power density of 51 mW cm-2 in Zinc-Air batteries, which observably outperformed commercial Pt/C (20 wt%). The X-ray photoelectron spectroscopy reveal that the doped P atoms with a strong electron-donating effectively enhances electron cloud density of Mn SAs sites, facilitating the adsorption of O2 molecules. Meanwhile, the introduction of MnP NPs can regulate the electronic structure of Mn SAs sites, making Mn SAs active sites exist in a low oxidation state and are less positively charged, which can supply electrons for ORR process to narrow the adsorption energy barrier of ORR intermediates. This work constructs novel active sites with excellent ORR properties and provides valuable reference for the development of practical application.

2.
J Colloid Interface Sci ; 647: 43-51, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37244175

ABSTRACT

Hexagonal boron nitride (BN) is an attractive filler candidate for thermal interface materials, but the thermal conductivity enhancement is limited by the anisotropic thermal conductivity of BN and disordered thermal pathways in the polymer matrix. Herein, a facile and economic ice template method is proposed, wherein BN modified by tannic acid (BN-TA) directly self-assemble to form vertically aligned nacre-mimetic scaffold without additional binders and post-treatment. The effects of the BN slurry concentration and the ratio of BN/TA on three-dimensional (3D) skeleton morphology are fully investigated. The corresponding polydimethylsiloxane (PDMS) composite via vacuum-impregnation achieves a high through-plane thermal conductivity of 3.8 W/mK at a low filler loading of 18.7 vol%, which is 2433% and 100% higher than that of pristine PDMS and the PDMS composite with randomly distributed BN-TA, respectively. The finite element analysis results theoretically demonstrate the superiority of the highly longitudinally ordered 3D BN-TA skeleton in axial heat transfer. Additionally, 3D BN-TA/PDMS exhibits excellent practical heat dissipation capability, lower thermal expansion coefficient, and enhanced mechanical properties. This strategy offers an anticipated perspective for developing high-performance thermal interface materials to address the thermal challenges of modern electronics.

3.
J Colloid Interface Sci ; 645: 513-524, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37159993

ABSTRACT

Transition metal phosphide (TMP) emerges as a promising electrocatalyst for overall water splitting (OWS). However, conventional TMP materials require exogenous metal ions to participate in coordination reactions, which usually suffer from active site blocking, pronounced intrinsic impedance, and inevitable catalyst shedding at high current density. Herein, a novel in-situ construction strategy has been developed to grow N-doped carbon (NC) enwrapped Co/CoP nanosheets directly onto Co foam (abbreviated as CoF) through a three-step transformation of Co to Co(OH)2 to Co-Metal-Organic Framework (Co-MOF) to Co/CoP/NC. In the entire preparation process, Co metal is only provided by the CoF substrate without external metal sources. Such in-situ construction yields tight contact at the interface of the heterogeneous catalyst, leading to much-reduced impedance and boundary vacancy, while the porous nitrogen-doped carbon backbone further endows the catalyst with the exposure of massive active sites, promotes mass transfer, and possesses high electrical conductivity. The Co/CoP/NC/CoF requires overpotentials of only 64 mV/263 mV@10 mA cm-2 and 414 mV/481 mV@400 mA cm-2 for both HER/OER in 1.0 M KOH, respectively. Remarkably, it reveals excellent OWS catalytic activity with a cell voltage of 1.56 V@10 mA cm-2 and 1.88 V@200 mA cm-2. This strategy of in-situ interface engineering transformation provides new ideas for direct device processing and construction of highly-efficient transition-metal-based OWS electrode materials.

4.
J Colloid Interface Sci ; 640: 1040-1051, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36921383

ABSTRACT

Transition metal selenides (TMSes) with cubic pyrite-type crystal structure have been widely explored as electrocatalysts for oxygen evolution reaction (OER), but the insufficient hydrogen evolution reaction (HER) performance hinders the application of overall water splitting. Herein, we designed and prepared a Mo doped NiSe2-CoSe2 heterostructure aerogel as bifunctional electrocatalyst via facile spontaneous gelation and selenium vapor deposition. The active sites on the heterointerface possessed desirable Gibbs free energy of hydrogen adsorption, leading to better HER performance than single NiSe2 or CoSe2. Moreover, systematically experimental research and density functional theory (DFT) calculations revealed that fine regulated Mo doping improved the electropositivity of heterostructure, promoting the nucleophilic adsorption of water molecule. Benefit from those improvements, the optimal Mo doped NiSe2-CoSe2 aerogel exhibited an extremely low overpotential of 57 mV at the current density of 10 mA·cm-2 for HER with a small Tafel slope value of 38 mV·dec-1. Meanwhile, Mo doping provided higher electron transfer efficiency and better adsorptive property toward reaction intermediate in anodic reaction, resulting in low overpotential of 270 mV at the current density of 100 mA·cm-2 for OER with good electrocatalytic stability. This work provides an anticipated perspective of rational combination of metal doping and heterostructure for advanced electrocatalysts.

5.
J Colloid Interface Sci ; 638: 582-594, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36774872

ABSTRACT

The regulation of the multi-dimensional interface plays an important role in optimizing the electron transport and gas mass transfer during catalysis, which is conducive to promoting the electrocatalytic process. Herein, a self-supporting electrode has been developed with the multistage interface within 3D Ni2P@C nanospheres/nanoflowers arrays derived from metal-organic frameworks (MOFs) as template skeletons and precursors. The constructed nanosphere interface protrudes outward to optimize the contact with the electrolyte while the nanoflower lamellar connection promotes rapid electron transfer and exposes more active sites, and accelerates the gas diffusion with the abundant interspace channels. According to theoretical calculation, the synergistic effect between Ni2P and C is conducive to the optimal adsorption and desorption of H*, thus contributing to the improvement of catalytic kinetics. With the optimized growth times assembled onto nickel foam substrates, the Ni2P@C-12 h requires overpotentials of only 69 mV and 205 mV to drive the current density of 10 mA cm-2 towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. And it reveals an ultralow cell voltage of 1.55 V at 10 mA cm-2 to achieve overall water splitting (OWS). In addition, the stability of the Ni2P@C/NF electrocatalyst emerges as prominent long-term stability, which is attributed to the carbonaceous nanosphere anchors on the substrate to minimize the possibility of oxidation of the catalyst surface. This strategy of in situ growth of MOF-derived phosphates provides a general idea for interfacial engineering modification of OWS electrode materials.

6.
J Colloid Interface Sci ; 632(Pt B): 237-248, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36427420

ABSTRACT

Transition metal-based (Fe, Co, Cu, etc.) single-atom catalysts (SAC) have been widely used in the direct oxidation of ethylbenzene and benzene. However, their catalytic performance is limited by the low metal loading. Compared with traditional SAC, dual site single-atom catalysts (DSAC) show the advantages of abundant active sites, high metal loading, and excellent catalytic performance. Herein, a novel Fe/CuNC DSAC was prepared by facile one-pot pyrolysis of formaldehyde, dicyandiamide, and metal salts. Dicyandiamide acted as the carbon source with advantage of high nitrogen content, which promoted the formation of metal centers and increased the metal loading. Meanwhile, the synergistic effect between Fe and Cu active centers was revealed to adjust the coordination environment, thus improving the catalytic activity of oxygen activation. The synthesized Fe/CuNC DSAC demonstrated superior catalytic performance in ethylbenzene oxidation reaction with O2 as a green oxidant under mild reaction conditions, with a 99 % conversion of acetophenone and no significant degradation of activity after 10 circles. In addition, NaCl was added into the synthesis as a template to adjust the pore structure, and the modified Fe/CuNC DSAC showed excellent performance in benzene oxidation reaction with high product conversion. In conclusion, this work paves the way for the construction of efficient, green, and cost-effective catalysts for the direct oxidation of ethylbenzene and benzene.

7.
Small ; 18(48): e2204375, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36269880

ABSTRACT

The application of nitrogen-doped porous carbon for sodium-ion batteries (SIBs) has attracted tremendous attention. Herein, a series of edge-nitrogen enriched porous carbon nanosheets (ENPCNs) are synthesized by annealing g-C3 N4 and glucose in a sealed graphite crucible at different temperatures (T = 700, 800, and 900 °C). Surprisingly, under the closed thermal treatment condition, the ENPCNs-T possess a high N-doping level (>12.62 at%) and different carbon interlayer distance ranging from 0.429 to 0.487 nm. By correlating the carbon interlayer distance with the N configurations of ENPCNs-T materials, a reasonable perception of the important influence of pyrrolic N on the increase of carbon interlayer distance is proposed. When applied as anode materials for SIBs, the ENPCNs-800 exhibits a remarkable capacity (294.1 mAh g-1 at 0.1 A g-1 ), excellent rate performance (132.8 mAh g-1 at 10 A g-1 ), and outstanding cycle life (180.6 mAh g-1 at 1 A g-1 after 1000 cycles with a capacity retention of 104.7%). Meanwhile, the characterizations of cyclic voltammetry, galvanostatic intermittent titration technique, and electrochemical impedance spectroscopy demonstrate that the edge-nitrogen doping and enlarged carbon interlayer distance improve the capacity and fast charging performance of ENPCNs-800. Considering the detailed investigation of the Na+ storage mechanism and excellent electrochemical performance of ENPCNs-800, this work can pave a new avenue for the research of SIBs.

8.
J Colloid Interface Sci ; 619: 388-398, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35398769

ABSTRACT

HYPOTHESIS: The practical applications of boron nitride nanosheet (BNNS) are dramatically limited by the harsh exfoliation and surface functionalization conditions due to the hydrophobic and chemically inert nature. This issue can be improved by selecting efficient modifiers with hydrophilic groups. EXPERIMENTS: A green and scalable amino acid-assisted ball milling method is presented to exfoliate and functionalize BNNS simultaneously. The different interactions between BNNS and four amino acids (tryptophan (Trp), phenylalanine (Phe), arginine (Arg), lysine (Lys)) are thoroughly investigated to rationalize the thermal and mechanical properties of their corresponding epoxy (EP) composites. FINDING: Trp and Phe display higher functionalization degree and dispersibility of BNNS than Arg and Lys thanks to the additional π-π interactions between the aromatic groups and BNNS. Moreover, both BNNS-Trp/EP and BNNS-Phe/EP exhibit higher cross-plane thermal conductivity of 2.1 and 1.96 W m-1 K-1 at 30 wt% filler loading. In addition, the mechanical strengths of all these amino acids functionalized BNNS filled epoxy composites are significantly enhanced due to stronger interfacial interactions between fillers and epoxy matrix. Thus, this work paves the way for the facile mass production of functionalized BNNS and expedites their applications in thermal interface materials of electronic components.


Subject(s)
Amino Acids , Boron Compounds , Boron Compounds/chemistry , Epoxy Resins , Thermal Conductivity
9.
ACS Appl Mater Interfaces ; 14(18): 20358-20367, 2022 May 11.
Article in English | MEDLINE | ID: mdl-34460231

ABSTRACT

A non-noble-metal hybrid catalyst (Ni2P/NPC-P), composed of N,P-doped porous carbon decorated with surface P-enriched Ni2P nanoparticles, is developed to address the urgent challenges associated with mass production of clean hydrogen fuel. The synthesis features one-pot pyrolysis of inexpensive fluid catalytic cracking slurry, graphitic carbon nitride, and inorganic salts, followed by a feasible surface phosphidation process. As a non-noble metal catalyst, Ni2P/NPC-P demonstrates excellent performance in hydrogen evolution reaction in alkaline electrolytes with a low overpotential of 73 mV at a current density of 10 mA cm-2 (η10) and a small Tafel slope of 56 mV dec-1, meanwhile exhibits durability with no significant η10 change after 2000 catalytic cycles. Theoretical calculation reveals that the negatively charged P-enriched surface accelerated the rate-determining transformation and desorption of OH*. In overall water splitting, the electrocatalyst achieves a low η10 of 1.633 V, promising its potential in the cost-effective mass production of hydrogen fuel.

10.
Chem Sci ; 12(24): 8438-8444, 2021 May 18.
Article in English | MEDLINE | ID: mdl-34221325

ABSTRACT

It is urgently desired yet challenging to synthesize porous graphitic carbon (PGC) in a bottom-up manner while circumventing the need for high-temperature pyrolysis. Here we present an effective and scalable strategy to synthesize PGC through acid-mediated aldol triple condensation followed by low-temperature graphitization. The deliberate structural design enables its graphitization in situ in solution and at low pyrolysis temperature. The resulting material features ultramicroporosity characterized by a sharp pore size distribution. In addition, the pristine homogeneous composition of the reaction mixture allows for solution-processability of the material for further characterization and applications. Thin films of this PGC exhibit several orders of magnitude higher electrical conductivity compared to analogous control materials that are carbonized at the same temperatures. The integration of low-temperature graphitization and solution-processability not only allows for an energy-efficient method for the production and fabrication of PGC, but also paves the way for its wider employment in applications such as electrocatalysis, sensing, and energy storage.

11.
J Am Chem Soc ; 140(20): 6383-6390, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29719956

ABSTRACT

The predesignable porous structures in metal-organic frameworks (MOFs) render them quite attractive as a host-guest platform to address a variety of important issues at the frontiers of science. In this work, a perfluorophenylene functionalized metalloporphyrinic MOF, namely, PCN-624, has been rationally designed, synthesized, and structurally characterized. PCN-624 is constructed by 12-connected [Ni8(OH)4(H2O)2Pz12] (Pz = pyrazolide) nodes and fluorinated 5,10,15,20-tetrakis(2,3,5,6-tetrafluoro-4-(1 H-pyrazol-4-yl)phenyl)-porphyrin (TTFPPP) linker with an ftw-a topological net. Notably, PCN-624 exhibits extinguished robustness under different conditions, including organic solvents, strong acid, and base aqueous solutions. The pore surface of PCN-624 is decorated with pendant perfluorophenylene groups. These moieties fabricate densely fluorinated nanocages resulting in the selective guest capture of the material. More importantly, PCN-624 can be employed as an efficient heterogeneous catalyst for the selective synthesis of fullerene-anthracene bisadduct. Owing to the high chemical robustness of PCN-624, it can be recycled over five times without significant loss of its catalytic activity. All of these results demonstrate that MOFs can serve as a powerful platform with great flexibility for functional design to solve various synthetic problems.

12.
Adv Mater ; 29(37)2017 Oct.
Article in English | MEDLINE | ID: mdl-28741748

ABSTRACT

One of the most pressing environmental concerns of our age is the escalating level of atmospheric CO2 . Intensive efforts have been made to investigate advanced porous materials, especially porous organic polymers (POPs), as one type of the most promising candidates for carbon capture due to their extremely high porosity, structural diversity, and physicochemical stability. This review provides a critical and in-depth analysis of recent POP research as it pertains to carbon capture. The definitions and terminologies commonly used to evaluate the performance of POPs for carbon capture, including CO2 capacity, enthalpy, selectivity, and regeneration strategies, are summarized. A detailed correlation study between the structural and chemical features of POPs and their adsorption capacities is discussed, mainly focusing on the physical interactions and chemical reactions. Finally, a concise outlook for utilizing POPs for carbon capture is discussed, noting areas in which further work is needed to develop the next-generation POPs for practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...