Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Medicine (Baltimore) ; 103(8): e36770, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394518

ABSTRACT

Little is known about the relationship between programmed cell death-ligand 1 (PD-L1) expression and histologic and genetic features in real-world Chinese non-small cell lung cancer patients. From November 2017 to June 2019, tumor tissues were collected from 2674 non-small cell lung cancer patients. PD-L1 expression was detected with immunohistochemistry using the 22C3 and SP263 antibodies, and patients were stratified into subgroups based on a tumor proportion score of 1%, 1% to 49%, and ≥ 50%. Genetic alterations were profiled using targeted next-generation sequencing. In the total population, 50.5% had negative PD-L1 expression (tumor proportion score < 1%), 32.0% had low-positive expression (1%-49%), and 17.5% had high-positive expression (≥50%). The PD-L1 positive rate was 39.0% in squamous cell carcinomas and 53.6% in adenocarcinomas. PD-L1 expression was higher in squamous cell carcinomas (P < .001) and lower in adenocarcinomas (P < .001). Of the overall patient population, 11.2% had Kirsten rat sarcoma viral oncogene (KRAS) mutations, 44.9% had epidermal growth factor receptor (EGFR) mutations, 2.1% had BRAF V600E mutations, 0.3% had MET exon 14 skipping mutations, 5.4% had anaplastic lymphoma kinase translocations, and 0.9% had ROS proto-oncogene 1 translocations. Patients carrying ROS proto-oncogene 1 translocations (P = .006), KRAS (P < .001), and MET (P = .023) mutations had significantly elevated expression of PD-L1, while those harboring EGFR (P < .001) mutations had lower PD-L1 expression. In our study, PD-L1 expression was significantly higher in squamous cell carcinomas and lower in adenocarcinomas, and was positively associated with MET and KRAS mutations, as well as the wild-type EGFR gene state. Nonetheless, additional studies are needed to further validate those associations and determine the clinical significance for immune checkpoint inhibitors of these factors.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , B7-H1 Antigen , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Reactive Oxygen Species/metabolism , Adenocarcinoma/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Carcinoma, Squamous Cell/genetics , Mutation , China
2.
Phys Rev Lett ; 132(4): 044001, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38335365

ABSTRACT

Spatiotemporal vortex pulses are wave packets that carry transverse orbital angular momentum, exhibiting exotic structured wave fronts that can twist through space and time. Existing methods to generate these pulses require complex setups like spatial light modulators or computer-optimized structures. Here, we demonstrate a new approach to generate spatiotemporal vortex pulses using just a simple diffractive grating. The key is constructing a phase vortex in frequency-momentum space by leveraging symmetry, resonance, and diffraction. Our approach is applicable to any wave system. We use a liquid surface wave (gravity wave) platform to directly demonstrate and observe the real-time generation and evolution of spatiotemporal vortex pulses. This straightforward technique provides opportunities to explore pulse dynamics and potential applications across different disciplines.

3.
Opt Lett ; 48(7): 1710-1713, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37221747

ABSTRACT

Achieving Goos-Hänchen shift enhancement with high transmittance or reflectance based on the resonance effect is challenging due to the drop in the resonance region. This Letter demonstrates the realization of large transmitted Goos-Hänchen shifts with high (near 100%) transmittance based on a coupled double-layer grating system. The double-layer grating is composed of two parallel and misaligned subwavelength dielectric gratings. By changing the distance and the relative dislocation between the two dielectric gratings, the coupling of the double-layer grating can be flexibly tuned. The transmittance of the double-layer grating can be close to 1 in the entire resonance angle region, and the gradient of the transmissive phase is also preserved. The Goos-Hänchen shift of the double-layer grating reaches ∼30 times the wavelength, approaching 1.3 times the radius of the beam waist, which can be observed directly.

4.
Opt Express ; 30(9): 14002-14018, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35473154

ABSTRACT

By using single-layer metasurfaces, we realized ultrawide-angle high-transmission in the millimeter-wave band, which allowed more than 98% transmission of dual-polarized electromagnetic waves for almost all incident angles. The multipolar expansion method was used to analyze and verify the condition of the generalized Kerker effect at the corresponding reflected angles. Using quartz glass substrates with the same metallic periodic structures, electromagnetic windows are proposed that can improve any-directed 5G millimeter-wave communication signals from outdoor to indoor environments. The proposed interpretations can connect the Kerker effect with actual applications and enable the design of easy-to-integrate all-angle Kerker effect metasurface devices.

5.
Small ; 18(21): e2200662, 2022 May.
Article in English | MEDLINE | ID: mdl-35460197

ABSTRACT

Magnetic photonic crystals (PCs) possess attractive magnetic orientation, flexible pattern designability, and abundant angle-dependent colors, providing immense potential in anticounterfeiting field. However, all-solid magnetic PCs-based labels generally suffer from incompatibility with screen printing techniques, and inferior environmental endurance and mechanical properties. Herein, by developing a selective concentration polymerization method under magnetic field (H) in microheterogenous dimethyl sulfoxide-water binary solvents, individual tens-of-micrometer-length lipophilic magnetic photonic nanochains (PNCs) of full-width at half-maxima below 30 nm are fabricated, which, after simply dispersed in solvent-free cycloaliphatic epoxy resin, can be formulated as photonic inks to print robust anticounterfeiting labels through an H-assisted screen-printing technology. The as-printed labels possess vivid optically variable effects (OVEs) associated with the spatial distribution of H directionality, which are easy to identify by the naked eye but difficult to imitate and duplicate, while they show excellent environmental resistance and mechanical properties, promising practical applications in banknotes and high-grade commodities. The polymerization mechanism of the lipophilic PNCs is elucidated, and the OVEs are deciphered in numerical simulation. Besides an efficient way to build organic-inorganic hybrid nanostructures, the work provides advanced structural color pigments to achieve the practical application of magnetic PCs in such an anticounterfeiting field.

6.
Phys Rev Lett ; 127(4): 043901, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34355949

ABSTRACT

We report the observation of polarization singularities in momentum space of 2D photonic quasicrystal slabs. Supercell approximation and band-unfolding approach are applied to obtain approximate photonic dispersions and the far-field polarization states defined on them. We discuss the relations between the topological charges of the polarization vortex singularities at Γ points and the symmetries of photonic quasicrystal slabs. With a perspective of multipolar expansions for the supercell, we confirm that the singularities are protected by the point-group symmetry of the photonic quasicrystal slab. We further uncover that the polarization singularities of photonic quasicrystal slab correspond to quasibound states in the continuum with exceptionally high-quality factors. Polarization singularities of different topological charges are also experimentally verified. Our Letter introduces core concepts of optical singularities into quasiperiodic systems, providing new platforms for explorations merging topological and singular optics.

7.
Sci Rep ; 6: 33522, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27628099

ABSTRACT

Coupling electron beams carrying information into electronic units is fundamental in microelectronics. This requires precision manipulation of electron beams through a coupler with a good focusing ability. In graphene, the focusing of wide electron beams has been successfully demonstrated by a circular p-n junction. However, it is not favorable for information coupling since the focal length is so small that the focal spot locates inside the circular gated region, rather than in the background region. Here, we demonstrate that an array of gate-defined quantum dots, which has gradually changing lattice spacing in the direction transverse to propagation, can focus electrons outside itself, providing a possibility to make a coupler in graphene. The focusing effect can be understood as due to the gradient change of effective refractive indices, which are defined by the local energy band in a periodic potential. The strong focusing can be achieved by suitably choosing the lattice gradient and the layer number in the incident direction, offering an effective solution to precision manipulation of electron beams with wide electron energy range and high angular tolerance.

SELECTION OF CITATIONS
SEARCH DETAIL
...