Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
ACS Biomater Sci Eng ; 9(12): 6658-6669, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37991876

ABSTRACT

To construct their shells, molluscs are able to produce a large array of calcified materials including granular, prismatic, lamellar, fibrous, foliated, and plywood-like microstructures. The latter includes an aragonitic (the crossed-lamellar) and a calcitic (the crossed-foliated) variety, whose modes of formation are particularly enigmatic. We studied the crossed-foliated calcitic layers secreted solely by members of the limpet family Patellidae using scanning and transmission electron microscopy and electron backscatter diffraction. From the exterior to the interior, the material becomes progressively organized into commarginal first-order lamellae, with second and third order lamellae dipping in opposite directions in alternating lamellae. At the same time, the crystallographic texture becomes stronger because each set of the first order lamellae develops a particular orientation for the c-axis, while both sets maintain common orientations for one {104} face (parallel to the growth surface) and one a-axis (perpendicular to the planes of the first order lamellae). Each first order lamella shows a progressive migration of its crystallographic axes with growth in order to adapt to the orientation of the set of first order lamellae to which it belongs. To explain the progressive organization of the material, we hypothesize that a secretional zebra pattern, mirrored by the first order lamellae on the shell growth surface, is developed on the shell-secreting mantle surface. Cells belonging to alternating stripes behave differently to determine the growth orientation of the laths composing the first order lamellae. In this way, we provide an explanation as to how plywood-like materials can be fabricated, which is based mainly on the activity of mantle cells.


Subject(s)
Calcium Carbonate , Microscopy, Electron, Scanning , Calcium Carbonate/chemistry
2.
J Struct Biol ; 215(3): 107988, 2023 09.
Article in English | MEDLINE | ID: mdl-37364762

ABSTRACT

Structural biological hard tissues fulfill diverse tasks: protection, defence, locomotion, structural support, reinforcement, buoyancy. The cephalopod mollusk Spirula spirula has a planspiral, endogastrically coiled, chambered, endoskeleton consisting of the main elements: shell-wall, septum, adapical-ridge, siphuncular-tube. The cephalopod mollusk Sepia officinalis has an oval, flattened, layered-cellular endoskeleton, formed of the main elements: dorsal-shield, wall/pillar, septum, siphuncular-zone. Both endoskeletons are light-weight buoyancy devices that enable transit through marine environments: vertical (S. spirula), horizontal (S. officinalis). Each skeletal element of the phragmocones has a specific morphology, component structure and organization. The conjunction of the different structural and compositional characteristics renders the evolved nature of the endoskeletons and facilitates for Spirula frequent migration from deep to shallow water and for Sepia coverage over large horizontal distances, without damage of the buoyancy device. Based on Electron-Backscatter-Diffraction (EBSD) measurements and TEM, FE-SEM, laser-confocal-microscopy imaging we highlight for each skeletal element of the endoskeleton its specific mineral/biopolymer hybrid nature and constituent arrangement. We demonstrate that a variety of crystal morphologies and biopolymer assemblies are needed for enabling the endoskeleton to act as a buoyancy device. We show that all organic components of the endoskeletons have the structure of cholesteric-liquid-crystals and indicate which feature of the skeletal element yields the necessary mechanical property to enable the endoskeleton to fulfill its function. We juxtapose structural, microstructural, texture characteristics and benefits of coiled and planar endoskeletons and discuss how morphometry tunes structural biomaterial function. Both mollusks use their endoskeleton for buoyancy regulation, live and move, however, in distinct marine environments.


Subject(s)
Cephalopoda , Sepia , Animals , Mollusca , Sepia/anatomy & histology , Decapodiformes
3.
ACS Nano ; 17(3): 2829-2839, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36696398

ABSTRACT

The vast majority of calcium carbonate biocrystals differ from inorganic crystals in that they display a patent nanoroughness consisting of lumps of crystalline material (calcite/aragonite) surrounded by amorphous pellicles. Scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS) was used to map the calcite secreted by a barnacle chemically and structurally with ultrahigh resolution (down to 1 nm). The material is composed of irregular lumps of calcite (up to two hundred nm in diameter) surrounded by relatively continuous cortexes (up to 20 nm thick) of amorphous calcium carbonate (ACC) and/or nanocalcite plus biomolecules, with a surplus of calcium relative to carbonate. We develop a model by which the separation of the crystalline and amorphous phases takes place upon crystallization of the calcite from a precursor ACC. The organic biomolecules are expelled from the crystal lattice and concentrate in the form of pellicles, where they stabilize minor amounts of ACC/nanocalcite. In this way, we change the previously established conception of biomineral structure and growth.


Subject(s)
Calcium Carbonate , Calcium Carbonate/chemistry , Cell Proliferation , Crystallization
4.
Zoology (Jena) ; 153: 126027, 2022 08.
Article in English | MEDLINE | ID: mdl-35809463

ABSTRACT

We analyzed, by optical and transmission electron microscopy, the morphology and function of the mantle edge, including the formation of the periostracum, of ten species of protobranchs. Five species from the order Nuculida, four species from the order Nuculanida and one species from the order Solemyida were studied. A second outer fold, which seems to function as a template for the internal marginal crenulations of the valves, is present in the crenulated species of Nucula. The minute non-crenulated Ennucula aegeensis shows the glandular basal cells displaced toward the periostracal groove, resembling a minute additional fold between the outer and middle folds. Intense secretion of glycocalyx, together with active uptake of particles, have been observed in the inner epithelium of the middle mantle fold and the whole epithelium of the inner mantle fold in all the studied species. Contrary to the rest of the bivalves, all the protobranchs analyzed have two basal cells involved in the formation of the external nanometric pellicle of the periostracum, a character that would support the monophyly of protobranchs. A three-layered pattern is the general rule for the periostracum in protobranchs, like for other bivalves. The presence of pouches of translucent layer inside the tanned dark layer under periostracal folds is characteristic of the species with a folded periostracum; its function is unclear but could give flexibility to the periostracum. The non-nacreous internal shell layer and the presence of translucent pouches under periostracal folds in Sarepta speciosa resemble those found in nuculanids. However, the free periostracum is rather similar to those of N. hanleyi and E. aegeensis, with a continuous vesicular layer. All the latter supports the inclusion of Sarepta in the order Nuculanida but could indicate either a basal lineage or that the translucent vesicular layer is an adaptive trait.


Subject(s)
Bivalvia , Animals , Bivalvia/anatomy & histology , Epithelium
5.
Sci Rep ; 12(1): 11510, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798957

ABSTRACT

The external surface microornament of the glass scallops Catillopecten natalyae and malyutinae is made by calcitic spiny projections consisting of a stem that later divides into three equally spaced and inclined branches (here called aerials). C. natalyae contains larger and smaller aerials, whereas C. malyutinae only secreted aerials of the second type. A remarkable feature is that aerials within each type are fairly similar in size and shape and highly co-oriented, thus constituting a most sophisticated microornament. We demonstrate that aerials are single crystals whose morphology is strongly controlled by the crystallography, with the stem being parallel to the c-axis of calcite, and the branches extending along the edges of the {104} calcite rhombohedron. They grow epitaxially onto the foliated prisms of the outer shell layer. The co-orientation of the prisms explains that of the aerials. We have developed a model in which every aerial grows within a periostracal pouch. When this pouch reaches the growth margin, the mantle initiates the production of the aerial. Nevertheless, later growth of the aerial is remote, i.e. far from the contact with the mantle. We show how such an extremely sophisticated microornament has a morphology and co-orientation which are determined by crystal growth.


Subject(s)
Bivalvia , Pectinidae , Animals , Calcium Carbonate/chemistry , Crystallization , Crystallography
6.
Sci Rep ; 12(1): 710, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35027596

ABSTRACT

Mollusks have developed a broad diversity of shelled structures to protect against challenges imposed by biological interactions(e.g., predation) and constraints (e.g., [Formula: see text]-induced ocean acidification and wave-forces). Although the study of shell biomechanical properties with nacreous microstructure has provided understanding about the role of shell integrity and functionality on mollusk performance and survival, there are no studies, to our knowledge, that delve into the variability of these properties during the mollusk ontogeny, between both shells of bivalves or across the shell length. In this study, using as a model the intertidal mussel Perumytilus purpuratus to obtain, for the first time, the mechanical properties of its shells with nacreous microstructure; we perform uniaxial compression tests oriented in three orthogonal axes corresponding to the orthotropic directions of the shell material behavior (thickness, longitudinal, and transversal). Thus, we evaluated whether the shell material's stress and strain strength and elastic modulus showed differences in mechanical behavior in mussels of different sizes, between valves, and across the shell length. Our results showed that the biomechanical properties of the material building the P. purpuratus shells are symmetrical in both valves and homogeneous across the shell length. However, uniaxial compression tests performed across the shell thickness showed that biomechanical performance depends on the shell size (aging); and that mechanical properties such as the elastic modulus, maximum stress, and strain become degraded during ontogeny. SEM observations evidenced that compression induced a tortuous fracture with a delamination effect on the aragonite mineralogical structure of the shell. Findings suggest that P. purpuratus may become vulnerable to durophagous predators and wave forces in older stages, with implications in mussel beds ecology and biodiversity of intertidal habitats.


Subject(s)
Animal Shells/physiology , Biomechanical Phenomena/physiology , Mollusca/physiology , Animal Shells/anatomy & histology , Animal Shells/ultrastructure , Animals , Compressive Strength , Ecosystem , Elasticity
7.
iScience ; 24(11): 103288, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34765916

ABSTRACT

The shell of the cephalopod Argonauta consists of two layers of fibers that elongate perpendicular to the shell surfaces. Fibers have a high-Mg calcitic core sheathed by thin organic membranes (>100 nm) and configurate a polygonal network in cross section. Their evolution has been studied by serial sectioning with electron microscopy-associated techniques. During growth, fibers with small cross-sectional areas shrink, whereas those with large sections widen. It is proposed that fibers evolve as an emulsion between the fluid precursors of both the mineral and organic phases. When polygons reach big cross-sectional areas, they become subdivided by new membranes. To explain both the continuation of the pattern and the subdivision process, the living cells from the mineralizing tissue must perform contact recognition of the previously formed pattern and subsequent secretion at sub-micron scale. Accordingly, the fabrication of the argonaut shell proceeds by physical self-organization together with direct cellular activity.

8.
Acta Biomater ; 120: 12-19, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32565371

ABSTRACT

Many biological structures use liquid crystals as self-organizing templates for their formation. We review and analyse evidence that the crossed-lamellar biomineral microstructure of mollusc shells may be formed from such a liquid-crystal precursor. STATEMENT OF SIGNIFICANCE: Many biological structures use liquid crystals as self-organizing templates for their formation. We review and analyse evidence that the crossed-lamellar biomineral microstructure of mollusc shells may be formed from such a liquid-crystal precursor.


Subject(s)
Animal Shells , Liquid Crystals , Animals , Mollusca
9.
Data Brief ; 33: 106547, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33294532

ABSTRACT

Here, we provide the dataset associated with the research article "Orientation patterns of aragonitic crossed-lamellar, fibrous prismatic and myostracal microstructures of modern Glycymeris shells" [1]. Based on several tools (SEM, EBSD, laser confocal microscopy and FE-SEM) we present original data relative to the microstructure and texture of aragonite crystallites in all Glycymeris shell layers (crossed-lamellar, complex crossed-lamellar, fibrous prismatic and pedal retractor and adductor myostraca) and address texture characteristics at the transition from one layer to the other, identifying similarities and differences among the different layers. Shells were cut transversely, obliquely and longitudinally in order to obtain different orientated sections of the outer and inner layer and of the myostraca. The identification of major microstructural elements was provided by detailed SEM and laser confocal microscopy images. Microstructure and texture characterization was based on EBSD measurements presented as band contrast images and as color-coded crystal orientation maps with corresponding pole figures. Crystal co-orientation was measured with the MUD value. Finally, the distribution of the organic matrix occluded within the outer crossed-lamellar layer was revealed using FE-SEM. These data, besides providing a modern unaltered Glycymeris reference to detect diagenetic alteration in fossil analogs used for paleoenvironmental reconstructions, are useful to better comprehend the mechanisms of bivalve shell formation.

10.
J Struct Biol ; 212(3): 107653, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33148524

ABSTRACT

The shells of the bivalves Glycymeris glycymeris and Glycymeris nummaria are widely used for environmental studies. They consist of aragonite and comprise four different microstructures and textures from outer to inner shell surfaces: crossed-lamellar, myostracal, complex crossed-lamellar and fibrous prismatic. We characterize with SEM, EBSD, laser-confocal microscopy and AFM imaging mineral unit size, morphology and orientation of crystallites in the different microstructural arrangements and at the transition from one microstructure to the other. We also characterize the microstructure and texture of adductor and pedal retractor myostraca and address structural characteristics at the transition from crossed-lamellar to myostracal assemblies. We find that the crossed-lamellar layer has a three-dimensional crystallographic orientational order. Each set of first-order lamellae consists of twinned aragonite; the two sets of first-order lamellae are misoriented to each other by about 30 to 40° while retaining an approximately parallel a-axis; they do not show any particular twin relationship. Myostracal aragonite grows homoepitactically onto the crossed-lamellar aragonite, but is clearly a separate microstructure, with its own crystallite size and morphology. Within adductor and pedal myostraca, prisms increase in size towards inner surfaces. In contrast to the other shell layers, the myostraca form through competitive growth. The complex crossed-lamellar aragonite initially inherits the three-dimensional texture of the crossed-lamellar microstructure, but with growth develops an axial texture, which is transmitted to the underlying fibrous prismatic microstructure. With this work we provide a modern, unaltered, reference for fossil Glycymeris shells to be used for detection of diagenetic overprint in fossil Glycymeris analogs.


Subject(s)
Animal Shells/chemistry , Bivalvia/chemistry , Calcium Carbonate/chemistry , Animals , Crystallography/methods , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Minerals/chemistry , Skin/chemistry , X-Ray Diffraction/methods
11.
Sci Rep ; 10(1): 16784, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033294

ABSTRACT

The calcite grains forming the wall plates of the giant barnacle Austramegabalanus psittacus have a distinctive surface roughness made of variously sized crystalline nanoprotrusions covered by extremely thin amorphous pellicles. This biphase (crystalline-amorphous) structure also penetrates through the crystal's interiors, forming a web-like structure. Nanoprotrusions very frequently elongate following directions related to the crystallographic structure of calcite, in particular, the <- 441> directions, which are the strongest periodic bond chains (PBCs) in calcite. We propose that the formation of elongated nanoprotrusions happens during the crystallization of calcite from a precursor amorphous calcium carbonate (ACC). This is because biomolecules integrated within the ACC are expelled from such PBCs due to the force of crystallization, with the consequent formation of uninterrupted crystalline nanorods. Expelled biomolecules accumulate in adjacent regions, thereby stabilizing small pellicle-like volumes of ACC. With growth, such pellicles become occluded within the crystal. In summary, the surface roughness of the biomineral surface reflects the complex shape of the crystallization front, and the biphase structure provides evidence for crystallization from an amorphous precursor. The surface roughness is generally explained as resulting from the attachment of ACC particles to the crystal surface, which later crystallised in concordance with the crystal lattice. If this was the case, the nanoprotrusions do not reflect the size and shape of any precursor particle. Accordingly, the particle attachment model for biomineral formation should seek new evidence.


Subject(s)
Calcium Carbonate/chemistry , Thoracica/metabolism , Animals , Surface Properties
12.
J R Soc Interface ; 17(170): 20200505, 2020 09.
Article in English | MEDLINE | ID: mdl-32993433

ABSTRACT

The vesicular microstructure is a very distinctive arrangement of calcite, consisting of hollow cavities (vesicles) of diverse sizes and shapes, usually elongated in the direction of shell thickening. It is uniquely found among living bivalves in a single oyster family, Gryphaeidae. The vesicles are distributed in lenses interleaved with compact foliated layers. We have studied the morphology and distribution of vesicles within the lenses using optical and electron microscopy, and micro-computed tomography. At a small scale, vesicles do not follow a classical von Neumann-Mullins route typical of ideal foams. At a larger scale, the initiation and evolution of a vesicular layer statistically proceed like a foam, with vesicles becoming more numerous, larger and more even in size. In summary, the vesicular material follows a foam-like coarsening to reduce the number of energetically costly interfaces. However, a steady state is never reached because the animal permanently introduces energy in the system by creating new vesicles. The fabrication of the vesicular material is mediated by the production of an emulsion between the extrapallial fluid and the precursor PILP of the calcitic walls within the thin extrapallial space. For this mechanism to proceed, the mantle cells must perform highly sophisticated behaviours of contact recognition and secretion. Accordingly, the vesicular material is under mixed physical-biological control.


Subject(s)
Bivalvia , Ostreidae , Animals , Calcium Carbonate , Microscopy, Electron, Scanning , X-Ray Microtomography
13.
ACS Nano ; 14(8): 9277-9281, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32806068

ABSTRACT

Nacre, or mother of pearl, is a biomaterial with a layered structure. In a recent geological study, researchers found that the width of the nacre layers depends on the formation temperature, which is determined by the ocean water temperature. A linear dependence of layer width with respect to temperature is understandable within the transient liquid-crystalline nature of incipient nacre. Thus, developing nacre is a liquid-crystal thermometer recording its formation temperature. A more complete understanding of nacre formation is of interest not only for biology and geology, in terms of biomineralization and paleoclimatology, but also for materials science: for reproducing nacre or fabricating synthetic analogues and also potentially for developing new classes of layered materials with layer spacings tunable by pH and temperature.

14.
J R Soc Interface ; 17(168): 20200187, 2020 07.
Article in English | MEDLINE | ID: mdl-32693749

ABSTRACT

Stingless bees of the genus Tetragonula construct a brood comb with a spiral or a target pattern architecture in three dimensions. Crystals possess these same patterns on the molecular scale. Here, we show that the same excitable-medium dynamics governs both crystal nucleation and growth and comb construction in Tetragonula, so that a minimal coupled-map lattice model based on crystal growth explains how these bees produce the structures seen in their bee combs.


Subject(s)
Bees , Animals
15.
Nanomaterials (Basel) ; 10(4)2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32231143

ABSTRACT

The mechanical properties such as compressive strength and nanohardness were investigated for Pinctada margaritifera mollusk shells. The compressive strength was evaluated through a uniaxial static compression test performed along the load directions parallel and perpendicular to the shell axis, respectively, while the hardness and Young modulus were measured using nanoindentation. In order to observe the crack propagation, for the first time for such material, the in-situ X-ray microscopy (nano-XCT) imaging (together with 3D reconstruction based on the acquired images) during the indentation tests was performed. The results were compared with these obtained during the micro-indentation test done with the help of conventional Vickers indenter and subsequent scanning electron microscopy observations. The results revealed that the cracks formed during the indentation start to propagate in the calcite prism until they reach a ductile organic matrix where most of them are stopped. The obtained results confirm a strong anisotropy of both crack propagation and the mechanical strength caused by the formation of the prismatic structure in the outer layer of P. margaritifera shell.

16.
J R Soc Interface ; 17(164): 20190743, 2020 03.
Article in English | MEDLINE | ID: mdl-32126195

ABSTRACT

In biomineralization, it is essential to know the microstructural and crystallographic organization of natural hard tissues. This knowledge is virtually absent in the case of barnacles. Here, we have examined the crystal morphology and orientation of the wall plates of the giant barnacle Austromegabalanus psittacus by means of optical and electron microscopy, and electron backscatter diffraction. The wall plates are made of calcite grains, which change in morphology from irregular to rhombohedral, except for the radii and alae, where fibrous calcite is produced. Both the grains and fibres arrange into bundles made of crystallographically co-oriented units, which grow onto each other epitaxially. We call these areas crystallographically coherent regions (CCRs). Each CCR elongates and disposes its c-axis perpendicularly or at a high angle to the growth surfaces, whereas the a-axes of adjacent CCRs differ in orientation. In the absence of obvious organic matrices, this pattern of organization is interpreted to be produced by purely crystallographic processes. In particular, due to crystal competition, CCRs orient their fastest growth axes perpendicular to the growth surface. Since each CCR is an aggregate of grains, the fastest growth axis is that along which crystals stack up more rapidly, that is, the crystallographic c-axis in granular calcite. In summary, the material forming the wall plates of the studied barnacles is under very little biological control and the main role of the mantle cells is to provide the construction materials to the growth front.


Subject(s)
Thoracica , Animals , Calcium Carbonate , Crystallization , Crystallography
17.
R Soc Open Sci ; 6(9): 190458, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31598290

ABSTRACT

The morphology and ultrastructure of the shells of two balanid species have been examined, paying special attention to the three types of boundaries between plates: (i) radii-parietes, (ii) alae-sheaths, and (iii) parietes-basal plate. At the carinal surfaces of the radii and at the rostral surfaces of the alae, there are series of crenulations with dendritic edges. The crenulations of the radius margins interlock with less prominent features of the opposing paries margins, whereas the surfaces of the longitudinal abutments opposing the ala margins are particularly smooth. The primary septa of the parietes also develop dendritic edges, which abut the internal surfaces of the primary tubes of the base plates. In all cases, there are chitino-proteinaceous organic membranes between the abutting structures. Our observations indicate that the very edges of the crenulations and the primary septa are permanently in contact with the organic membranes. We conclude that, when a new growth increment is going to be produced, the edges of both the crenulations and the primary septa pull the viscoelastic organic membranes locally, with the consequent formation of viscous fingers. For the abutting edges to grow, calcium carbonate must diffuse across the organic membranes, but it is not clear how growth of the organic membranes themselves is accomplished, in the absence of any cellular tissue.

18.
Sci Rep ; 9(1): 598, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679565

ABSTRACT

The fibrous calcite layer of modern brachiopod shells is a hybrid composite material and forms a substantial part of the hard tissue. We investigated how cells of the outer mantle epithelium (OME) secrete calcite material and generate the characteristic fibre morphology and composite microstructure of the shell. We employed AFM, FE-SEM, and TEM imaging of embedded/etched, chemically fixed/decalcified and high-pressure frozen/freeze substituted samples. Calcite fibres are secreted by outer mantle epithelium (OME) cells. Biometric analysis of TEM micrographs indicates that about 50% of these cells are attached via hemidesmosomes to an extracellular organic membrane present at the proximal, convex surface of the fibres. At these sites, mineral secretion is not active. Instead, ion transport from OME cells to developing fibres occurs at regions of closest contact between cells and fibres, however only at sites where the extracellular membrane at the proximal fibre surface is not developed yet. Fibre formation requires the cooperation of several adjacent OME cells. It is a spatially and temporally changing process comprising of detachment of OME cells from the extracellular organic membrane, mineral secretion at detachment sites, termination of secretion with formation of the extracellular organic membrane, and attachment of cells via hemidesmosomes to this membrane.


Subject(s)
Animal Shells/chemistry , Calcium Carbonate/chemistry , Invertebrates/metabolism , Animal Shells/ultrastructure , Animals , Calcium Carbonate/metabolism , Desmosomes/metabolism , Epithelium/metabolism , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
19.
J Struct Biol ; 205(3): 7-17, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30576768

ABSTRACT

Foliated calcite is widely employed by some important pteriomorph bivalve groups as a construction material. It is made from calcite laths, which are inclined at a low angle to the internal shell surface, although their arrangement is different among the different groups. They are strictly ordered into folia in the anomiids, fully independent in scallops, and display an intermediate arrangement in oysters. Pectinids have particularly narrow laths characterized by their ability to change their growth direction by bending or winding, as well as to bifurcate and polyfurcate. Electron backscatter analysis indicates that the c-axes of laths are at a high, though variable, angle to the growth direction, and that the laths grow preferentially along the projection of an intermediate axis between two a-axes, although they can grow in any intermediate direction. Their main surfaces are not particular crystallographic faces. Analyses done directly on the lath surfaces demonstrate that, during the bending/branching events, all crystallographic axes remain invariant. The growth flexibility of pectinid laths makes them an excellent space-filling material, well suited to level off small irregularities of the shell growth surface. We hypothesize that the exceptional ability of laths to change their direction may be promoted by the mode of growth of biogenic calcite, from a precursor liquid phase induced by organic molecules.


Subject(s)
Animal Shells/ultrastructure , Biomineralization/physiology , Calcium Carbonate/chemistry , Ostreidae/ultrastructure , Pectinidae/ultrastructure , Animal Shells/anatomy & histology , Animal Shells/physiology , Animals , Calcium Carbonate/metabolism , Crystallography/methods , Microscopy, Electron, Scanning/methods , Ostreidae/anatomy & histology , Ostreidae/physiology , Pectinidae/anatomy & histology , Pectinidae/physiology , Spain
20.
Sci Rep ; 8(1): 7507, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29760483

ABSTRACT

Oyster shells are mainly composed of layers of foliated microstructure and lenses of chalk, a highly porous, apparently poorly organized and mechanically weak material. We performed a structural and crystallographic study of both materials, paying attention to the transitions between them. The morphology and crystallography of the laths comprising both microstructures are similar. The main differences were, in general, crystallographic orientation and texture. Whereas the foliated microstructure has a moderate sheet texture, with a defined 001 maximum, the chalk has a much weaker sheet texture, with a defined 011 maximum. This is striking because of the much more disorganized aspect of the chalk. We hypothesize that part of the unanticipated order is inherited from the foliated microstructure by means of, possibly, [Formula: see text] twinning. Growth line distribution suggests that during chalk formation, the mantle separates from the previous shell several times faster than for the foliated material. A shortage of structural material causes the chalk to become highly porous and allows crystals to reorient at a high angle to the mantle surface, with which they continue to keep contact. In conclusion, both materials are structurally similar and the differences in orientation and aspect simply result from differences in growth conditions.


Subject(s)
Animal Shells/ultrastructure , Calcium Carbonate/chemistry , Ostreidae/ultrastructure , Animal Shells/chemistry , Animals , Crystallography, X-Ray , Microscopy, Electron, Scanning , Ostreidae/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...