Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nat Commun ; 15(1): 586, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38233393

ABSTRACT

X-chromosomal genetic variants are understudied but can yield valuable insights into sexually dimorphic human traits and diseases. We performed a sex-stratified cross-ancestry X-chromosome-wide association meta-analysis of seven kidney-related traits (n = 908,697), identifying 23 loci genome-wide significantly associated with two of the traits: 7 for uric acid and 16 for estimated glomerular filtration rate (eGFR), including four novel eGFR loci containing the functionally plausible prioritized genes ACSL4, CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R, and three sex-differential findings with larger genetic effect sizes in males at DCAF12L1 and MST4 and larger effect sizes in females at HPRT1. All prioritized genes in loci showing significant sex-interactions were located next to androgen response elements (ARE). Five ARE genes showed sex-differential expressions. This study contributes new insights into sex-dimorphisms of kidney traits along with new prioritized gene targets for further molecular research.


Subject(s)
Androgens , Genome-Wide Association Study , Humans , Male , Female , Androgens/genetics , Kidney , Chromosomes, Human, X/genetics , Response Elements , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Tetraspanins/genetics
2.
Kidney Int ; 102(3): 624-639, 2022 09.
Article in English | MEDLINE | ID: mdl-35716955

ABSTRACT

Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic cross-section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03-1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.


Subject(s)
N-Acetylgalactosaminyltransferases , Renal Insufficiency, Chronic , Renal Insufficiency , Cross-Sectional Studies , Genetic Loci , Genome-Wide Association Study , Glomerular Filtration Rate/genetics , Humans , Kidney , Longitudinal Studies , N-Acetylgalactosaminyltransferases/genetics , Renal Insufficiency/genetics
4.
Commun Biol ; 5(1): 329, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393509

ABSTRACT

South Asians are at high risk of developing type 2 diabetes (T2D). We carried out a genome-wide association meta-analysis with South Asian T2D cases (n = 16,677) and controls (n = 33,856), followed by combined analyses with Europeans (neff = 231,420). We identify 21 novel genetic loci for significant association with T2D (P = 4.7 × 10-8 to 5.2 × 10-12), to the best of our knowledge at the point of analysis. The loci are enriched for regulatory features, including DNA methylation and gene expression in relevant tissues, and highlight CHMP4B, PDHB, LRIG1 and other genes linked to adiposity and glucose metabolism. A polygenic risk score based on South Asian-derived summary statistics shows ~4-fold higher risk for T2D between the top and bottom quartile. Our results provide further insights into the genetic mechanisms underlying T2D, and highlight the opportunities for discovery from joint analysis of data from across ancestral populations.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Asian People/genetics , Case-Control Studies , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Humans , Polymorphism, Single Nucleotide
7.
Kidney Int ; 99(4): 926-939, 2021 04.
Article in English | MEDLINE | ID: mdl-33137338

ABSTRACT

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.


Subject(s)
Genome-Wide Association Study , Kidney , AMP-Activated Protein Kinases , Creatinine , Glomerular Filtration Rate/genetics , Humans , Protein Disulfide-Isomerases , United Kingdom
8.
Commun Biol ; 3(1): 755, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311586

ABSTRACT

Nuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10-16) with nuclear cataract and identified five new loci associated with this disease: SOX2-OT (rs9842371, P = 1.7 × 10-19), TMPRSS5 (rs4936279, P = 2.5 × 10-10), LINC01412 (rs16823886, P = 1.3 × 10-9), GLTSCR1 (rs1005911, P = 9.8 × 10-9), and COMMD1 (rs62149908, P = 1.2 × 10-8). The results suggest a strong link of age-related nuclear cataract with congenital cataract and eye development genes, and the importance of common genetic variants in maintaining crystalline lens integrity in the aging eye.


Subject(s)
Cataract/etiology , Genetic Predisposition to Disease , Genetic Variation , SOXB1 Transcription Factors/genetics , Alleles , Cataract/diagnosis , Genetic Association Studies , Genome-Wide Association Study , Genotype , Humans , Polymorphism, Single Nucleotide
9.
Br J Ophthalmol ; 104(5): 610-615, 2020 05.
Article in English | MEDLINE | ID: mdl-31401553

ABSTRACT

BACKGROUND/AIMS: In order to address the eye care needs of the increasing numbers of elderly Chinese globally, there is a need for comprehensive understanding on the longitudinal trends of age-related eye diseases among Chinese. We herein report the key findings from the baseline Singapore Chinese Eye Study (SCES-1), and describe the rationale and methodology of the 6-year follow-up study (SCES-2). METHODS: 3353 Chinese adults who participated in the baseline SCES-1 (2009-2011) were invited for the 6-year follow-up SCES-2 (2015-2017). Examination procedures for SCES-2 included standardised ocular, systemic examinations and questionnaires identical to SCES-1. SCES-2 further included new examinations such as optical coherence tomography angiography, and questionnaires to evaluate health impact and economic burden of eye diseases. RESULTS: In SCES-1, the age-adjusted prevalence of best-corrected low vision (VA<6/12, better-seeing eye) and blindness (VA<6/60, better-seeing eye) were 3.4% and 0.2%, respectively. The prevalence rates for glaucoma, age related macular degeneration, and diabetic retinopathy (among diabetics) were 3.2%, 6.8%, 26.2%, respectively. Of the 3033 eligible individuals from SCES-1, 2661 participated in SCES-2 (response rate=87.7%). Comparing with those who did not attend SCES-2, those attended were younger, had higher SES (all p<0.001), but less likely to be a current smoker, to have diabetes, hypertension, hyperlipidaemia (all p≤0.025). CONCLUSIONS: Building on SCES-1, SCES-2 will be one of the few longitudinal population-based eye studies to report incidence, progression, and risk factors of major age-related eye diseases. Findings from this cohort may offer new insights, and provide useful reference information for other Chinese populations elsewhere.


Subject(s)
Eye Diseases/epidemiology , Fluorescein Angiography/methods , Tomography, Optical Coherence/methods , Visual Acuity , Adult , Age Distribution , Aged , Aged, 80 and over , China/epidemiology , Cross-Sectional Studies , Eye Diseases/diagnosis , Female , Follow-Up Studies , Fundus Oculi , Humans , Incidence , Male , Middle Aged , Prevalence , Retrospective Studies , Risk Factors , Sex Distribution , Singapore/epidemiology , Surveys and Questionnaires , Time Factors , Visually Impaired Persons/statistics & numerical data
10.
Nat Commun ; 10(1): 4130, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31511532

ABSTRACT

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.


Subject(s)
Albuminuria/genetics , Chromosome Mapping , Genome-Wide Association Study , Meta-Analysis as Topic , Animals , Creatinine/urine , Diabetes Mellitus/genetics , Diabetes Mellitus/urine , Drosophila melanogaster/genetics , Gene Expression Regulation , Genetic Loci , Genetic Predisposition to Disease , Humans , Phenomics , Risk Factors
11.
Sci Rep ; 7(1): 17921, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29263402

ABSTRACT

Recent genome-wide association studies (GWAS) have identified multiple loci associated with coronary artery disease (CAD) among predominantly Europeans. However, their relevance to multi-ethnic populations from Southeast Asia is largely unknown. We performed a meta-analysis of four GWAS comprising three Chinese studies and one Malay study (Total N = 2,169 CAD cases and 7,376 controls). Top hits (P < 5 × 10-8) were further evaluated in 291 CAD cases and 1,848 controls of Asian Indians. Using all datasets, we validated recently identified loci associated with CAD. The involvement of known canonical pathways in CAD was tested by Ingenuity Pathway Analysis. We identified a missense SNP (rs2075291, G > T, G185C) in APOA5 for CAD that reached robust genome-wide significance (Meta P = 7.09 × 10-10, OR = 1.636). Conditional probability analysis indicated that the association at rs2075291 was independent of previously reported index SNP rs964184 in APOA5. We further replicated 10 loci previously identified among predominantly Europeans (P: 1.33 × 10-7-0.047). Seven pathways (P: 1.10 × 10-5-0.019) were identified. We identified a missense SNP, rs2075291, in APOA5 associated with CAD at a genome-wide significance level and provided new insights into pathways contributing to the susceptibility to CAD in the multi-ethnic populations from Southeast Asia.


Subject(s)
Apolipoprotein A-V/genetics , Coronary Artery Disease/diagnosis , Coronary Artery Disease/genetics , Ethnicity/genetics , Genome-Wide Association Study/methods , Mutation, Missense , Polymorphism, Single Nucleotide , Adult , Aged , Aged, 80 and over , Asia, Southeastern , Biomarkers/metabolism , Case-Control Studies , Coronary Artery Disease/ethnology , Female , Follow-Up Studies , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Prognosis , Prospective Studies
12.
J Lipid Res ; 58(9): 1785-1796, 2017 09.
Article in English | MEDLINE | ID: mdl-28698208

ABSTRACT

Disturbance in lipid metabolism has been suggested as a major pathogenic factor for age-related macular degeneration (AMD). Conventional lipid measures have been inconsistently associated with AMD. Other factors that can alter lipid metabolism include lipoprotein phenotype and genetic mutations. We performed a case-control study to examine the association between lipoprotein profile and neovascular AMD (nAMD) and whether the cholesterylester transfer protein (CETP) D442G mutation modulates these associations. Patients with nAMD had significantly higher concentrations of HDL and IDL compared with controls. The increase in HDL particles in nAMD patients was driven by an excess of medium-sized particles. Concurrently, patients with nAMD also had lower Apo A-1, lower VLDL and chylomicron lipoprotein. Many of these associations showed a dose-dependent association between controls, early AMD cases, and nAMD cases. Adjustment for the presence of the D442G mutation at the CETP locus did not significantly alter the increased AMD risk associated with HDL particle concentration. AMD is associated with variation in many lipoprotein subclasses, including increased HDL and IDL particles and decreased Apo A-1, VLDL, and chylomicron particles. These data suggest widespread systemic disturbance in lipid metabolism in the pathogenesis of AMD, including possible alterations in lipoprotein carrier capacity.


Subject(s)
Lipoproteins/blood , Macular Degeneration/blood , Aged , Case-Control Studies , Cholesterol Ester Transfer Proteins/genetics , Female , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Male , Phenotype , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...