Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38930169

ABSTRACT

This work uses the direct current magnetron sputtering (DCMS) of equi-atomic (AlTiZrHfTa) and Si targets in dynamic sweep mode to deposit nano-layered (AlTiZrHfTa)Nx/SiNx refractory high-entropy coatings (RHECs). Transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are used to investigate the effect of Si addition on the oxidation behavior of the nano-layered coatings. The Si-free nitride coating exhibits FCC structure and columnar morphology, while the Si-doped nitride coatings present a FCC (AlTiZrHfTa)N/amorphous-SiNx nano-layered architecture. The hardness decreases from 24.3 ± 1.0 GPa to 17.5 ± 1.0 GPa because of the nano-layered architecture, whilst Young's modulus reduces from 188.0 ± 1.0 GPa to roughly 162.4 ± 1.0 GPa. By increasing the thickness of the SiNx nano-layer, kp values decrease significantly from 3.36 × 10-8 g2 cm-4 h-1 to 6.06 × 10-9 g2 cm-4 h-1. The activation energy increases from 90.8 kJ·mol-1 for (AlTiZrHfTa)Nx nitride coating to 126.52 kJ·mol-1 for the (AlTiZrHfTa)Nx/SiNx nano-layered coating. The formation of a FCC (AlTiZrHfTa)-Nx/a-SiNx nano-layered architecture results in the improvement of the resistance to oxidation at high temperature.

2.
Langmuir ; 37(30): 8897-8907, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34291926

ABSTRACT

Modified colloids and flat surfaces occupy an important place in materials science research due to their widespread applications. Interest in the development of modifiers that adhere strongly to surfaces relates to the need for stability under ambient conditions in many applications. Diazonium salts have evolved as the primary choice for the modification of surfaces. The term "diazonics" has been introduced in the literature to describe "the science and technology of aryldiazonium salt-derived materials". The facile reduction of diazonium salts via chemical or electrochemical processes, irradiation stimuli, or spontaneously results in the efficient modification of gold surfaces. Robust gold-aryl nanoparticles, where gold is connected to the aryl ring through bonding to carbon and films modified by using diazonium salts, are critical in electronics, sensors, medical implants, and materials for power sources. Experimental and theoretical studies suggest that gold-carbon interactions constructed via chemical reactions with diazonium salts are stronger than nondiazonium surface modifiers. This invited feature article summarizes the conceptual development of recent studies of diazonium salts in our laboratories and others with a focus on the surface modification of gold nanostructures, flat surfaces and gratings, and their applications in nanomedicine engineering, sensors, energy, forensic science, and catalysis.


Subject(s)
Diazonium Compounds , Salts , Gold , Gold Colloid , Surface Properties
3.
BMC Res Notes ; 14(1): 192, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34011402

ABSTRACT

OBJECTIVE: MG-63 cells that have osteoblastic and adipogenic differentiation potential were evaluated for internalization, and adipogenic differentiation in the presence and absence of the covalently functionalized aryl gold nanoparticles (AuNPs-C6H4-4-COOH). RESULTS: Inductively coupled plasma, flow cytometry and confocal microscopy analyses confirmed that gold nanoparticles were easily internalized by MG-63 cells. The MG-63 cells were differentiated into adipocytes without gold-aryl nanoparticles and with the gold-aryl nanoparticles at 5 µM concentration in both induction and maintenance media. The lipid content assay and the relative expressions of PPAR-γ, ADR1, GLUT1 and GLUT4 genes showed no significant variation with and without the gold nanoparticles treatment. Differential phosphorylation levels of 43 kinases phosphorylation sites were evaluated using the human phospho-kinase array to assess the effect of the gold nanoparticles on the signaling pathways during the differentiation. No kinase phosphorylation site was differentially phosphorylated with two or more folds after the nanoparticles treatment after the first day as well as at the end of MG-63 cells differentiation. The gold-aryl nanoparticles do not affect MG-63 cells differentiation into adipocytes neither do they affect any key signaling pathway. These properties make these gold nanoparticles suitable for future drug delivery and medical applications.


Subject(s)
Gold , Metal Nanoparticles , Adipogenesis , Cell Differentiation , Humans , PPAR gamma , Signal Transduction
4.
J Colloid Interface Sci ; 433: 115-122, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25127292

ABSTRACT

HYPOTHESIS: The poor miscibility of carbon nanotubes (CNTs) in common organic solvents and organic monomers requires their modification by suitable functional (reactive or not) groups prior to their incorporation in thermoplastic polymers. EXPERIMENTS: Dispersion behavior of carbon nanotubes and mechanical properties of various CNT-poly(methylmethacrylate) (PMMA) nanocomposites were investigated. We studied the influence of the surface chemistry through the use of diazonium salts as an elegant and environmentally friendly platform to provide a suitable sidewall functionalization by methyl methacrylate functions. We used either a molecular size functional group through the grafting of methacryloxypropyltrimethoxysilane or a macromolecular size one, consisting in PMMA brushes grown by SI-ATRP in order to study the influence of the length of methacrylate function on the dispersion of CNT in PMMA. FINDINGS: The hardness and the elastic indentation modulus of all hybrid films were obtained through nanoindentation measurements and found to increase, using ATRP-modified CNTs, suggesting a better dispersion of CNTs in PMMA due to optimal inorganic-organic interactions promoted by the short chains of PMMA.

SELECTION OF CITATIONS
SEARCH DETAIL
...