Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Adv ; 14(37): 27385-27393, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39205927

ABSTRACT

Gold nanorods (GNRs) have received much attention as potential drug-delivery vehicles because of their various advantages such as good biocompatibility, passive targeting, responsiveness to stimuli, and easy post-functionalization by surface modification. However, the drug structure might be changed for loading into GNRs, making it difficult to load various drugs, and the space to contain drugs is small, making it difficult to deliver sufficient drugs required for treatment compared with other porous materials. Herein, we report an amphiphilic polymer-coated GNR platform for chemo- and photothermal combination therapy. Amphiphilic polymers comprise hydrophobic alkyl chains for drug encapsulation, polyethylene glycol for biocompatibility, and folic acid for cancer targeting. GNRs generate heat energy under near-infrared light irradiation, promoting controlled drug release, and inducing cellular uptake by deforming the cell membrane. On-demand release behavior was traced with Nile red, and targeting and delivery efficiency were confirmed with paclitaxel through cellular experiments. This GNR-based platform enables combination therapy with passive and active targeting to enhance the efficacy of cancer treatment.

2.
ACS Omega ; 8(50): 48405-48412, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38144144

ABSTRACT

Chemically and physically stable multidrug-loaded layer-by-layer (LbL) films are promising candidates for sequential and on-demand drug release at concentrations suitable for various applications. The synergistic effect of the sequential release of drugs may enhance their therapeutic efficacy in treating skin cancer and other complex medical conditions. In this study, we prepared LbL films by alternating the deposition of cationic linear polyethylenimine, camptothecin (CPT)-loaded gold nanorods (GNRs), anionic poly(styrenesulfonate), and doxorubicin (DOX) based on electrostatic interactions. The film exhibited loading of CPT and DOX, which could be tuned according to the requirements of the application by changing the parameters of the LbL process. Herein, CPT was encapsulated in GNRs and showed good stability and absorption in the near-infrared (NIR) range (650-900 nm). The prepared LbL film showed a pH-dependent DOX release. Subsequently, the functionalized GNRs showed excellent photothermal properties, which assisted the on-demand release of CPT upon NIR irradiation with further release of DOX. Our results suggest that the LbL approach for sequential drug release can be an effective drug delivery platform owing to its cytocompatibility, anticancer effects, and stimuli-responsive properties.

SELECTION OF CITATIONS
SEARCH DETAIL