Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35055249

ABSTRACT

Fluorinated graphitic layers with good mechanical and chemical stability, polar C-F bonds, and tunable bandgap are attractive for a variety of applications. In this work, we investigated the photolysis of fluorinated graphites with interlayer embedded acetonitrile, which is the simplest representative of the acetonitrile-containing photosensitizing family. The samples were continuously illuminated in situ with high-brightness non-monochromatized synchrotron radiation. Changes in the compositions of the samples were monitored using X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NEXAFS N K-edge spectra showed that acetonitrile dissociates to form HCN and N2 molecules after exposure to the white beam for 2 s, and the latter molecules completely disappear after exposure for 200 s. The original composition of fluorinated matrices CF0.3 and CF0.5 is changed to CF0.10 and GF0.17, respectively. The highly fluorinated layers lose fluorine atoms together with carbon neighbors, creating atomic vacancies. The edges of vacancies are terminated with the nitrogen atoms and form pyridinic and pyrrolic units. Our in situ studies show that the photolysis products of acetonitrile depend on the photon irradiation duration and composition of the initial CFx matrix. The obtained results evaluate the radiation damage of the acetonitrile-intercalated fluorinated graphites and the opportunities to synthesize nitrogen-doped graphene materials.

2.
Materials (Basel) ; 13(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796571

ABSTRACT

The electrical conductivity of graphene materials is strongly sensitive to the surface adsorbates, which makes them an excellent platform for the development of gas sensor devices. Functionalization of the surface of graphene opens up the possibility of adjusting the sensor to a target molecule. Here, we investigated the sensor properties of fluorinated graphene films towards exposure to low concentrations of nitrogen dioxide NO2. The films were produced by liquid-phase exfoliation of fluorinated graphite samples with a composition of CF0.08, CF0.23, and CF0.33. Fluorination of graphite using a BrF3/Br2 mixture at room temperature resulted in the covalent attachment of fluorine to basal carbon atoms, which was confirmed by X-ray photoelectron and Raman spectroscopies. Depending on the fluorination degree, the graphite powders had a different dispersion ability in toluene, which affected an average lateral size and thickness of the flakes. The films obtained from fluorinated graphite CF0.33 showed the highest relative response ca. 43% towards 100 ppm NO2 and the best recovery ca. 37% at room temperature.

3.
Nanoscale ; 11(32): 15298-15306, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31386736

ABSTRACT

Despite decades of study the precise behavior of bromine in graphitic carbons remains unclear. In this report, using Raman spectroscopy, we reveal two types of bromine structure in graphitic carbon materials. Between fluorinated graphene layers with a composition close to C2F, Br2 molecules are intercalated in a form similar to liquid bromine. Bromination of pristine and low-fluorinated graphitic carbons behaves very differently with distinct Br-related Raman spectra. With the guidance of density functional theory (DFT) calculations, all Raman features are assigned to normal vibration modes of specific bromine species over graphene and fluorinated graphene. When intercalated between extended non-fluorinated sp2-hybridized carbon regions, physisorbed Br2 molecules move freely across the non-functionalized region toward the CF border. Multiple Br2 molecules then combine spontaneously into Br3-based chains, whose coupling activates otherwise Raman inactive modes. Significant charge transfer to bromine species occurs in this case. DFT calculated frequencies match precisely the experimental Br-related Raman bands observed in the intercalation carbon compounds. The fluorine-catalyzed bromine chain-formation process shown here is general and should also operate with edges and other defect species.

4.
ACS Nano ; 11(9): 8643-8649, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28783303

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.

SELECTION OF CITATIONS
SEARCH DETAIL
...