Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Elife ; 122023 04 11.
Article in English | MEDLINE | ID: mdl-37039453

ABSTRACT

Fatty acid amide hydrolase (FAAH) degrades the endocannabinoid anandamide. A polymorphism in FAAH (FAAH C385A) reduces FAAH expression, increases anandamide levels, and increases the risk of obesity. Nevertheless, some studies have found no association between FAAH C385A and obesity. We investigated whether the environmental context governs the impact of FAAH C385A on metabolic outcomes. Using a C385A knock-in mouse model, we found that FAAH A/A mice are more susceptible to glucocorticoid-induced hyperphagia, weight gain, and activation of hypothalamic AMP-activated protein kinase (AMPK). AMPK inhibition occluded the amplified hyperphagic response to glucocorticoids in FAAH A/A mice. FAAH knockdown exclusively in agouti-related protein (AgRP) neurons mimicked the exaggerated feeding response of FAAH A/A mice to glucocorticoids. FAAH A/A mice likewise presented exaggerated orexigenic responses to ghrelin, while FAAH knockdown in AgRP neurons blunted leptin anorectic responses. Together, the FAAH A/A genotype amplifies orexigenic responses and decreases anorexigenic responses, providing a putative mechanism explaining the diverging human findings.


Subject(s)
AMP-Activated Protein Kinases , Endocannabinoids , Mice , Humans , Animals , Agouti-Related Protein , Endocannabinoids/metabolism , Amidohydrolases/metabolism , Obesity
2.
Animal ; 16(10): 100645, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36202060

ABSTRACT

Hypocalcemia remains a common metabolic disorder of dairy cattle; therefore, an efficient prevention is still challenging. Among the various prevention strategies for hypocalcemia is the use of anionic compounds to induce a mild metabolic acidosis during the prepartum period. Acid-base status can be readily assessed through urine pH. Accordingly, a target urine pH during the prepartum period between 6.0 and 6.8 has been recommended for Holstein cows; however, in several countries, including the US, certain nutritional strategies are still focused on benchmarking the urine pH to below 6.0. Unfortunately, over-acidification can have no advantages and/or detrimental effects on both the dam and her offspring. In this review, updated information regarding the use of anionic diets on prepartum dairy cows and the potential negative impact of such diets on both cow and calf performance are discussed. There is an urgent need for studies that will elucidate the pathophysiological mechanisms by which very acidotic diets may impact the well-being and productive efficiency of dairy cows, and the transgenerational effects of such diets on offspring performance and survival.


Subject(s)
Hypocalcemia , Animal Feed/analysis , Animals , Anions/metabolism , Anions/pharmacology , Cations/metabolism , Cations/pharmacology , Cattle , Diet/veterinary , Dietary Supplements , Female , Hydrogen-Ion Concentration , Hypocalcemia/metabolism , Hypocalcemia/prevention & control , Hypocalcemia/veterinary , Lactation/physiology , Milk/metabolism , Postpartum Period
3.
Mol Nutr Food Res ; 66(7): e2100653, 2022 04.
Article in English | MEDLINE | ID: mdl-35108450

ABSTRACT

SCOPE: Dietary protein, prebiotic fiber, and exercise individually have been shown to aid in weight loss; however less is known of their combined effects on energy balance. The effects of diets high in protein and fiber, with exercise, on energy balance, hormones, and gut microbiota, were determined. METHODS AND RESULTS: Obese male rats were fed high-fat diets with high protein and fiber contents from egg protein and cellulose, egg protein and inulin, whey protein and cellulose, or whey protein and inulin, together with treadmill exercise. We found that inulin enriched diets decreased energy intake and respiratory quotient (RQ), increased energy expenditure (EE), and upregulated transcripts for cholecystokinin (CCK), peptide YY, and proglucagon in distal gut. Notably, CCK1-receptor blockade attenuated the hypophagic effects of diets and in particular whey-inulin diet, and ß-adrenergic blockade reduced EE across all diets. Egg-cellulose, egg-inulin, and whey-inulin diets decreased weight gain, adiposity, and hepatic lipidosis; decreased lipogenic transcripts, improved glycemic control, and upregulated hepatic glucose metabolism transcripts; and decreased plasma insulin and leptin. Importantly, diet was linked to altered gut microbial composition and plasma metabolomics, and a subset of predicted metagenome pathways and plasma metabolites significantly correlated, with plasma butyric acid the most strongly associated to metagenome function. CONCLUSION: Combination of dietary egg or whey protein with inulin and exercise improved energy balance, glucose metabolism, upregulated anorectic hormones, and selectively modulated gut microbiota and plasma metabolites.


Subject(s)
Gastrointestinal Microbiome , Inulin , Animals , Diet, High-Fat/adverse effects , Energy Metabolism , Inulin/metabolism , Inulin/pharmacology , Male , Obesity/metabolism , Rats , Whey Proteins/pharmacology
4.
J Nutr Biochem ; 99: 108860, 2022 01.
Article in English | MEDLINE | ID: mdl-34520853

ABSTRACT

Diets supplemented with protein and fiber are well known to reduce food intake and weight gain; however, less is known about the combined effects of protein and prebiotic fiber on energy balance and gut microbiota composition. We compared effects of diets containing high egg or whey protein with cellulose or prebiotic (inulin) fiber on energy balance, gut microbiota, hormones, and metabolites. Male obese rats (n=8/group) were allocated to four diets: Egg albumen+Cellulose (EC), Egg albumen+Inulin (EI), Whey protein+Cellulose (WC), and Whey protein+Inulin (WI). Results revealed that diet-induced hypophagia was transient with EC and prolonged with EI and WI, compared to WC. Importantly, CCK-1 receptor antagonist (Devazepide) attenuated the hypophagic effects of EC, EI, and WI. Further, EC, EI and WI decreased respiratory quotient, energy expenditure, weight and adiposity gains, and improved glycemia, relative to WC. Propranolol (ß1-ß2-receptor blocker) attenuated diet-induced changes in energy expenditure. Transcript abundance of thermogenic markers in brown adipose tissue, plasma hormones, and metabolites especially acyl-carnitines and glycerophospholipids, were differentially altered by diets. Diet explained 25% of compositional differences in cecal microbiomes, but diets with same fiber type did not differ. Microbiota differing between groups also strongly correlated with gut hormones and metabolites. Species most strongly correlated to a marker for butyrate production were in highest abundance in inulin diets. Together, these findings indicate that inulin enriched diets containing egg or whey protein improved energy balance, decreased adiposity, and modulated gut microbiota and metabolites, with CCK signaling partly mediating the satiety effects of diets.


Subject(s)
Egg Proteins/metabolism , Gastrointestinal Microbiome , Inulin/metabolism , Obesity/diet therapy , Obesity/microbiology , Whey Proteins/metabolism , Adiposity , Animals , Blood Glucose/metabolism , Cecum/microbiology , Chickens , Dietary Fiber/metabolism , Energy Metabolism , Humans , Male , Obesity/metabolism , Obesity/physiopathology , Prebiotics/analysis , Rats , Rats, Sprague-Dawley
5.
Front Nutr ; 8: 655833, 2021.
Article in English | MEDLINE | ID: mdl-34055853

ABSTRACT

Low protein diets are associated with increased lifespan and improved cardiometabolic health primarily in rodents, and likely improve human health. There is strong evidence that moderate to severe reduction in dietary protein content markedly influences caloric intake and energy expenditure, which is often followed by a decrease in body weight and adiposity in animal models. While the neuroendocrine signals that trigger hyperphagic responses to protein restriction are better understood, there is accumulating evidence that increased sympathetic flux to brown adipose tissue, fibroblast growth factor-21 and serotonergic signaling are important for the thermogenic effects of low protein diets. This mini-review specifically focuses on the effect of low protein diets with variable carbohydrate and lipid content on energy intake and expenditure, and the underlying mechanisms of actions by these diets. Understanding the mechanisms by which protein restriction influences energy balance may unveil novel approaches for treating metabolic disorders in humans and improve production efficiency in domestic animals.

6.
J Nutr ; 150(4): 763-774, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31879775

ABSTRACT

BACKGROUND: Whey protein (WH)-enriched diets are reported to aid in weight loss and to improve cardiovascular health. However, the bioactive components in whey responsible for causing such effects remain unidentified. OBJECTIVE: We determined the effects of whey and its components [α-lactalbumin (LA) and lactoferrin (LF)] on energy balance, glucose tolerance, gut hormones, renal damage, and stroke onset in rats. METHODS: Male spontaneously hypertensive stroke-prone (SHRSP) rats (age 8 wk) were fed isocaloric high-fat (40% kcal) and high-salt (4% wt/wt) diets (n = 8-10/group) and randomized for 8 wk to diets enriched as follows: control (CO): 15% kcal from egg albumin, 45% kcal from carbohydrate; WH: 20%kcal WH isolate + 15% kcal egg albumin; LA: 20% kcal LA  + 15% kcal egg albumin; or LF: 20% kcal lactoferrin + 15% kcal egg albumin. Measurements included energy balance (food intake, energy expenditure, and body composition), stroke-related behaviors, brain imaging, glucose tolerance, metabolic hormones, and tissue markers of renal damage. Data were analyzed by linear mixed models with repeated measures or 1-way ANOVA. RESULTS: Diets enriched with WH, LA, or LF increased survival, with 25% of rats fed these diets exhibiting stroke-associated morbidity, whereas 90% of CO rats were morbid by 8 wk (P < 0.05). The nephritis scores of rats fed WH-, LA-, or LF-enriched diets were 80%, 92%, and 122% lower than those of COs (P = 0.001). The mRNA abundances of renin and osteopontin were 100-600% lower in rats fed WH-, LA-, or LF-enriched diets than in COs (P < 0.05). Urine albumin concentrations and albumin-to-creatinine ratios were 200% lower in rats fed LF-enriched diets than in COs (P < 0.05). Compared with COs, rats fed LF-enriched diets for 2-3 wk had food intake decreased by 29%, body weight decreased by 13-19%, lean mass decreased by 12-19%, and fat mass decreased by 20% (P < 0.001). Relative to COs, rats fed WH and LA had food intake decreased by 10% (P < 0.1), but COs had 12-45% lower weight than rats fed LA- and WH-enriched diets by 3 wk (P < 0.01). Compared with COs, rats fed WH-enriched diets increased energy expenditure by 7%, whereas, rats fed LA-enriched diets had energy expenditure acutely decreased by 7% during the first 4 d, and rats fed LF-enriched diets had energy expenditure decreased by 7-17% throughout the first week ( P < 0.001). Rats fed LA- and LF-enriched diets had blood glucose decreased by 14-19% (P < 0.05) and WH by 9% (P = 0.1), relative to COs. Compared with COs, rats fed LF had GIP decreased by 90% and PYY by 87% (P < 0.05). CONCLUSION: Together, these findings indicate that whey and its components α-lactalbumin and lactoferrin improved energy balance and glycemic control, and protected against the onset of neurological deficits associated with stroke and renal damage in male SHRSP rats.


Subject(s)
Energy Metabolism/drug effects , Kidney Diseases/prevention & control , Lactalbumin/administration & dosage , Lactoferrin/administration & dosage , Stroke/prevention & control , Whey Proteins/administration & dosage , Animals , Behavior, Animal , Blood Glucose/analysis , Brain/pathology , Brain/physiopathology , Diet , Diet, High-Fat/adverse effects , Eating , Kidney Diseases/etiology , Kidney Diseases/pathology , Male , Motor Activity , Rats , Rats, Inbred SHR , Sodium Chloride, Dietary/adverse effects , Stroke/etiology , Stroke/pathology
7.
BMC Vet Res ; 15(1): 332, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31533709

ABSTRACT

BACKGROUND: Both diabetes mellitus (DM) and obesity are common in cats. The adipokines leptin, adiponectin, resistin and omentin are thought to have important roles in human obesity and glucose homeostasis; however, their functions in the pathophysiology of feline diabetes mellitus and obesity are poorly understood. We determined whether sexual dimorphism exists for circulating concentrations of these adipokines, whether they are associated with adiposity, and whether they correlate with basic indices of insulin sensitivity in cats. Healthy, client-owned male and female cats that were either ideal weight or obese were recruited into the study. Fasting blood glucose, fructosamine, cholesterol, triglycerides, insulin and plasma concentrations of adipokines were evaluated. RESULTS: Obese cats had greater serum concentrations of glucose and triglycerides than ideal weight cats, but fructosamine and cholesterol concentrations did not differ between groups. Body weight and body mass index were greater in male than female cats, but circulating metabolite cocentrations were similar between sexes of both the ideal weight and obese groups. Plasma concentrations of insulin and leptin were greater in obese than ideal weight cats, with reciprocal reduction in adiponectin concentrations in obese cats; there were no sex differences in these hormones. Interestingly, plasma omentin concentrations were greater in male than female cats but with no differences between obese and ideal weight states. CONCLUSION: Together our findings suggest that rather than gender, body weight and adiposity are more important determinants of circulating concentrations of the adipokines leptin and adiponectin. On the contrary, the adipokine omentin is not affected by body weight or adiposity but instead exhibits sexual dimorphism in cats.


Subject(s)
Adipokines/blood , Adiposity , Cat Diseases/metabolism , Obesity/veterinary , Animals , Blood Glucose , Cat Diseases/blood , Cats , Cholesterol/blood , Female , Fructosamine/blood , Insulin/blood , Insulin Resistance , Male , Obesity/metabolism , Sex Factors , Triglycerides/blood
8.
Nutrients ; 11(9)2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31450760

ABSTRACT

The objective was to determine effects of feed restriction and refeeding on reproductive development and energy balance in pre-pubertal male rats. Sprague Dawley rats (n = 32, 24 days old, ~65 g), were randomly allocated into four treatments (n = 8/treatment): (1) Control (CON, ad libitum feed; (2) Mild Restriction (MR, rats fed 75% of CON consumption); (3) Profound Restriction (PR, 50% of CON consumption); or (4) Refeeding (RF, 50% restriction for 14 days, and then ad libitum for 7 days). Feed restriction delayed reproductive development and decreased energy balance and tissue accretion, with degree of reproductive and metabolic dysfunctions related to restriction severity. In RF rats, refeeding largely restored testis weight, sperm production (per gram and total), plasma IGF-1, leptin and insulin concentrations and energy expenditure, although body composition did not completely recover. On Day 50, more CON and RF rats than PR rats were pubertal (5/6, 4/5 and 1/6, respectively; plasma testosterone >1 ng/mL) with the MR group (4/6) not different. Our hypothesis was supported: nutrient restriction of pre-pubertal rats delayed reproductive development, induced negative energy balance and decreased metabolic hormone concentrations (commensurate with restriction), whereas short-term refeeding after profound restriction largely restored reproductive end points and plasma hormone concentrations, but not body composition.


Subject(s)
Caloric Restriction , Energy Metabolism , Sexual Development , Testis/growth & development , Age Factors , Animals , Biomarkers/blood , Body Composition , Insulin/blood , Insulin-Like Growth Factor I/metabolism , Leptin/blood , Male , Nutritional Status , Rats, Sprague-Dawley , Sperm Motility , Spermatozoa/metabolism , Spermatozoa/pathology , Testis/metabolism
9.
Mol Nutr Food Res ; 63(21): e1900088, 2019 11.
Article in English | MEDLINE | ID: mdl-31365786

ABSTRACT

SCOPE: Dietary protein restriction elicits hyperphagia and increases energy expenditure; however, less is known of whether these responses are a consequence of increasing carbohydrate content. The effects of protein-diluted diets with fixed carbohydrate content on energy balance, hormones, and key markers of protein sensing and thermogenesis in tissues are determined. METHODS AND RESULTS: Obesity-prone rats (n = 13-16 per group) are randomized to diets containing fixed carbohydrate (52% calories) and varying protein concentrations: 15% (control), 10% (mild protein restriction), 5% (moderate protein restriction) or 1% (severe protein restriction) protein calories, or protein-matched to 5% protein, for 21 days. Propranolol and ondansetron are administered to interrogate the roles of sympathetic and serotonergic systems, respectively, in diet-induced changes in energy expenditure. It is found that mild-to-moderate protein restriction promotes transient hyperphagia, whereas severe protein restriction induces hypophagia, with alterations in meal patterns. Protein restriction enhances energy expenditure that is partly attenuated by propranolol, but not ondansetron. Moderate to severe protein restriction decreases gains in body weight, lean and fat mass, decreased postprandial glucose and leptin, but increased fibroblast growth factor-21 concentrations. Protein-matching retains lean mass suggesting that intake of dietary protein, but not calories, is important for preserving lean mass. Notably, protein restriction increases the protein and/or transcript abundance of key amino acid sensing molecules in liver and intestine (PERK, eIF2α, ATF2, CHOP, 4EBP1, FGF21), and upregulated thermogenic markers (ß2AR, Klotho, HADH, UCP-1) in brown adipose tissue. CONCLUSION: Low-protein diets promote hyperphagia and sympathetically mediated increase in energy expenditure, prevent gains in tissue reserves, and concurrently upregulate hepatic and intestinal amino acid sensing intermediaries and thermogenic markers in brown adipose tissue.


Subject(s)
Diet, Protein-Restricted/adverse effects , Energy Metabolism/drug effects , Hyperphagia/etiology , Adipose Tissue, Brown/metabolism , Animals , Body Composition/physiology , Body Weight , Dietary Carbohydrates/pharmacology , Energy Intake , Fibroblast Growth Factors/blood , Leptin/blood , Liver/metabolism , Male , Rats, Sprague-Dawley , Thermogenesis/drug effects
10.
Res Vet Sci ; 124: 223-227, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30928654

ABSTRACT

Gastrointestinal hormone based therapies are being investigated for treating diabetes in cats; however, the tissue distribution of these hormones and their cognate receptors remain largely understudied. We determined the distribution of transcripts for the gut hormones proglucagon (Gcg), glucose-dependent insulinotropic peptide (Gip), peptide YY (Pyy), and their receptors (Glp1r, Gipr, Npy2r), in feline peripheral tissues. The Gcg, Gip and Pyy mRNA were expressed in the gut, with higher Gcg and Pyy abundance in the lower gut. Interestingly, Glp1r and Npy2r mRNA were expressed in multiple peripheral tissues including the gut, pancreas and liver, whereas, Gipr mRNA was restricted to the stomach and adipose tissues. The localized mRNA expression of Gcg and Pyy in the gut, but the extensive distribution of Glp1r and Npy2r in several peripheral tissues suggests that these hormones may have pleiotropic physiological functions in cats.


Subject(s)
Cats/genetics , Gastric Inhibitory Polypeptide/genetics , Peptide YY/genetics , Proglucagon/genetics , Receptors, Gastrointestinal Hormone/genetics , Receptors, Peptide/genetics , Animals , Cats/metabolism , Gastric Inhibitory Polypeptide/metabolism , Gene Expression Profiling , Peptide YY/metabolism , Proglucagon/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Peptide/metabolism , Tissue Distribution , Transcription, Genetic
11.
Nutrients ; 11(3)2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30917593

ABSTRACT

Total amino acid (AA) restriction promotes hyperphagia and energy expenditure. We determined whether (i) methionine restriction mimics the effects of total AA restriction, (ii) methionine supplementation attenuates these responses, and iii) sympathetic signaling mediates such effects. Rats were injected with either vehicle (V) or 6-hydroxydopamine (S) to induce chemical sympathectomy, and then randomized to four diets: 16% AA (16AA), 5% AA (5AA), 16% AA-methionine (16AA-Met), and 5% AA+methionine (5AA+Met). Propranolol or ondansetron were injected to examine the role of sympathetic and serotonergic signaling, respectively. 5AA, 5AA+Met, and 16AA-Met increased the food conversion rate for 1⁻3 weeks in the V and S groups, and increased mean energy expenditure in V group,; the magnitude of these changes was attenuated in the S group. Propranolol decreased the energy expenditure of V16AA, V5AA, and V5AA+Met and of S5AA, S5AA+Met, and S16AA-Met, whereas ondansetron decreased the energy expenditure in only the S groups. Compared to 16AA, the other V groups had reduced body weights from days 7⁻11 onwards and decreased lean masses throughout the study and the other S groups had decreased body weights and lean masses from day 14 onwards. Total AA restriction enhanced the energy expenditure and reduced the weight and lean mass; these effects were partly recapitulated by methionine restriction and were sympathetically mediated.


Subject(s)
Amino Acids/administration & dosage , Diet/veterinary , Dietary Proteins/administration & dosage , Energy Metabolism/drug effects , Methionine/pharmacology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Methionine/administration & dosage , Rats
12.
FASEB J ; 33(6): 6748-6766, 2019 06.
Article in English | MEDLINE | ID: mdl-30821497

ABSTRACT

Metabolic syndrome encompasses obesity, glucose intolerance, hypertension, and dyslipidemia; however, the interactions between diet and host physiology that predispose to metabolic syndrome are incompletely understood. Here, we explored the effects of a high-fat diet (HFD) on energy balance, gut microbiota, and risk factors of metabolic syndrome in spontaneously hypertensive stroke-prone (SHRSP) and Wistar-Kyoto (WKY) rats. We found that the SHRSP rats were hypertensive, hyperphagic, less sensitive to hypophagic effects of exendin-4, and expended more energy with diminished sensitivity to sympathetic blockade compared to WKY rats. Notably, key thermogenic markers in brown and retroperitoneal adipose tissues and skeletal muscle were up-regulated in SHRSP than WKY rats. Although HFD promoted weight gain, adiposity, glucose intolerance, hypertriglyceridemia, hepatic lipidosis, and hyperleptinemia in both SHRSP and WKY rats, the SHRSP rats weighed less but had comparable percent adiposity to WKY rats, which supports the use of HFD-fed SHRSP rats as a unique model for studying the metabolically obese normal weight (MONW) phenotype in humans. Despite distinct strain differences in gut microbiota composition, diet had a preponderant impact on gut flora with some of the taxa being strongly associated with key metabolic parameters. Together, we provide evidence that interactions between host genetics and diet modulate gut microbiota and predispose SHRSP rats to develop metabolic syndrome.-Singh, A., Zapata, R. C., Pezeshki, A., Workentine, M. L., Chelikani, P. K. Host genetics and diet composition interact to modulate gut microbiota and predisposition to metabolic syndrome in spontaneously hypertensive stroke-prone rats.


Subject(s)
Diet, High-Fat/adverse effects , Gastrointestinal Microbiome , Genetic Predisposition to Disease , Glucose Intolerance/etiology , Hypertension/complications , Metabolic Syndrome/etiology , Stroke/complications , Animals , Biomarkers , Glucose Intolerance/pathology , Hypertension/physiopathology , Male , Metabolic Syndrome/pathology , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Stroke/physiopathology
14.
J Nutr Biochem ; 65: 115-127, 2019 03.
Article in English | MEDLINE | ID: mdl-30685580

ABSTRACT

Moderate dietary protein restriction promotes hyperphagia and thermogenesis; however, little is known of whether these responses are due to restriction of the essential amino acids tryptophan and histidine. Here, we determined whether restriction of tryptophan and histidine alone recapitulate the effects of total amino acid restriction on energy balance, and whether the metabolic responses are age-dependent. We fed young (12 weeks old) and older (29 weeks old) diet-induced obese rats with one of four high-fat diets: control (CON, 100% amino acid requirement), total amino acid restriction (TAA, 67% amino acid restriction), tryptophan restriction (TRP, 67% tryptophan restriction) or histidine restriction (HIS, 67% histidine restriction) for 21 days. Energy balance, hormones, and key markers of hepatic nutrient sensing and brown adipose thermogenesis were measured. We found that TAA increased food intake in both young and older rats, with TRP, but not HIS, transiently simulating the hyperphagia. TAA promoted sympathetically mediated increase in energy expenditure in young rats partly through increased ß2-adrenergic and FGF21 signaling in brown fat; TRP partially emulated these responses. TRP and HIS transiently increased fat mass in young rats, and TAA promoted adiposity in older rats. TAA, TRP and HIS increased postprandial FGF21 concentrations in older rats. TAA induced age-dependent differential changes in markers of hepatic amino acid sensing; TRP and HIS partially mimicked these responses. Collectively, restriction of tryptophan, but not histidine, partially recapitulated the age-dependent metabolic effects of total amino acid restriction, in concert with distinct changes in hepatic amino acid sensing and signaling mechanisms.


Subject(s)
Energy Metabolism/drug effects , Obesity/etiology , Tryptophan/administration & dosage , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Age Factors , Amino Acids/administration & dosage , Animals , Behavior, Animal/drug effects , Body Composition/drug effects , Diet, High-Fat/adverse effects , Eating/drug effects , Histidine/administration & dosage , Hormones/metabolism , Liver/drug effects , Liver/metabolism , Male , Obesity/diet therapy , Proteins/metabolism , Rats, Sprague-Dawley
15.
J Heart Lung Transplant ; 37(9): 1047-1059, 2018 09.
Article in English | MEDLINE | ID: mdl-30173823

ABSTRACT

BACKGROUND: Mycophenolate mofetil (MMF) is commonly prescribed after transplantation and has major advantages over other immunosuppressive drugs, but frequent gastrointestinal (GI) side-effects limit its use. The mechanism(s) underlying MMF-related GI toxicity have yet to be elucidated. METHODS: To investigate MMF-related GI toxicity, experimental mice were fed chow containing MMF (0.563%) and multiple indices of toxicity, including weight loss and colonic inflammation, were measured. Changes in intestinal microbial composition were detected using 16S rRNA Illumina sequencing, and downstream PICRUSt analysis was used to predict metagenomic pathways involved. Germ-free (GF) mice and mice treated with orally administered broad-spectrum antibiotics (ABX) were utilized to interrogate the importance of the microbiota in MMF-induced GI toxicity. RESULTS: Mice treated with MMF exhibited significant weight loss, related to loss of body fat and muscle, and marked colonic inflammation. MMF exposure was associated with changes in gut microbial composition, as demonstrated by a loss of overall diversity, expansion of Proteobacteria (specifically Escherichia/Shigella), and enrichment of genes involved in lipopolysaccharide (LPS) biosynthesis, which paralleled increased levels of LPS in the feces and serum. MMF-related GI toxicity was dependent on the intestinal microbiota, as MMF did not induce weight loss or colonic inflammation in GF mice. Furthermore, ABX prevented and reversed MMF-induced weight loss and colonic inflammation. CONCLUSIONS: An intact intestinal microbiota is required to initiate and sustain the GI toxicity of MMF. MMF treatment causes dynamic changes in the composition of the intestinal microbiota that may be a targetable driver of the GI side-effects of MMF.


Subject(s)
Disease Models, Animal , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Immunosuppressive Agents/toxicity , Microbiota/drug effects , Mycophenolic Acid/toxicity , Animals , Colon/drug effects , Colon/microbiology , Germ-Free Life , High-Throughput Nucleotide Sequencing , Humans , Immunosuppressive Agents/therapeutic use , Male , Mice , Mice, Inbred Strains , Microbiota/immunology , Mycophenolic Acid/therapeutic use , Proteobacteria , RNA, Ribosomal, 16S , Sequence Analysis, RNA , Weight Loss/drug effects
16.
Proc Natl Acad Sci U S A ; 115(29): 7605-7610, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29967158

ABSTRACT

Endocannabinoid signaling regulates feeding and metabolic processes and has been linked to obesity development. Several hormonal signals, such as glucocorticoids and ghrelin, regulate feeding and metabolism by engaging the endocannabinoid system. Similarly, studies have suggested that leptin interacts with the endocannabinoid system, yet the mechanism and functional relevance of this interaction remain elusive. Therefore, we explored the interaction between leptin and endocannabinoid signaling with a focus on fatty acid amide hydrolase (FAAH), the primary degradative enzyme for the endocannabinoid N-arachidonoylethanolamine (anandamide; AEA). Mice deficient in leptin exhibited elevated hypothalamic AEA levels and reductions in FAAH activity while leptin administration to WT mice reduced AEA content and increased FAAH activity. Following high fat diet exposure, mice developed resistance to the effects of leptin administration on hypothalamic AEA content and FAAH activity. At a functional level, pharmacological inhibition of FAAH was sufficient to prevent leptin-mediated effects on body weight and food intake. Using a novel knock-in mouse model recapitulating a common human polymorphism (FAAH C385A; rs324420), which reduces FAAH activity, we investigated whether human genetic variance in FAAH affects leptin sensitivity. While WT (CC) mice were sensitive to leptin-induced reductions in food intake and body weight gain, low-expressing FAAH (AA) mice were unresponsive. These data demonstrate that FAAH activity is required for leptin's hypophagic effects and, at a translational level, suggest that a genetic variant in the FAAH gene contributes to differences in leptin sensitivity in human populations.


Subject(s)
Amidohydrolases/metabolism , Arachidonic Acids/metabolism , Eating , Endocannabinoids/metabolism , Energy Metabolism/drug effects , Hypothalamus/metabolism , Leptin/pharmacology , Polyunsaturated Alkamides/metabolism , Amidohydrolases/genetics , Animals , Body Weight/drug effects , Body Weight/genetics , Dietary Fats/pharmacology , Eating/drug effects , Eating/genetics , Gene Knock-In Techniques , Leptin/deficiency , Male , Mice , Mice, Knockout , Polymorphism, Genetic
17.
J Nutr Biochem ; 59: 142-152, 2018 09.
Article in English | MEDLINE | ID: mdl-30005919

ABSTRACT

Inulin, a popular prebiotic fiber, has been reported to promote satiety and fat loss; however, the dose-response effects of inulin on energy balance and diet preference, and whether the metabolic effects are independent of calorie restriction are not well characterized. Therefore, we compared the effects of diets varying in inulin concentrations on food intake, energy expenditure, body composition, gut microbiota and hormones, and assessed whether inulin-induced hypophagia was due to reduced diet preference. In experiment 1, male rats were randomized to six high-fat diet groups: control (CON, 0% inulin), 2.5% inulin (2.5IN), 10% inulin (10IN), 25% inulin (25IN), 25% cellulose (25CE) or pair-fed to 25IN (25PF) for 21 days. We demonstrate that inulin dose-dependently decreased caloric intake and respiratory quotient; improved glucose tolerance; increased the abundance of Bacteroidetes and Bifidobacterium spp.; decreased Clostridium clusters I and IV; increased butyryl-CoA:acetate CoA-transferase in cecum; upregulated peptide YY, cholecystokinin and proglucagon transcripts in the cecum and colon; and increased plasma peptide YY and glucagon-like peptide-1 concentrations. Importantly, unlike 25PF, 25IN attenuated the reduction in energy expenditure associated with calorie restriction and decreased adiposity. In experiment 2, following four training periods, diet preferences were determined. Although 10IN and 25IN decreased caloric intake, and 25CE increased caloric intake, during training, all high-fiber diets were less preferred. Taken together, this work demonstrates that inulin dose-dependently decreased caloric intake, modulated gut microbiota and upregulated satiety hormones, with metabolic effects being largely independent of caloric restriction.


Subject(s)
Diet, High-Fat/adverse effects , Energy Metabolism/drug effects , Gastrointestinal Microbiome/drug effects , Inulin/pharmacology , Adipose Tissue/drug effects , Animals , Blood Glucose/metabolism , Body Composition/drug effects , Cecum/drug effects , Cecum/metabolism , Cecum/microbiology , Dietary Fiber/pharmacology , Dietary Supplements , Dose-Response Relationship, Drug , Energy Intake/drug effects , Gastrointestinal Microbiome/physiology , Gene Expression Regulation/drug effects , Inulin/administration & dosage , Male , Prebiotics , Rats, Sprague-Dawley
18.
Obesity (Silver Spring) ; 26(4): 730-739, 2018 04.
Article in English | MEDLINE | ID: mdl-29504260

ABSTRACT

OBJECTIVE: To determine the effects of graded dietary restriction of tryptophan on food intake, energy expenditure, body composition, gut hormones, and select fecal bacterial populations in obesity-prone rats. METHODS: Obesity-prone rats were randomized to isocaloric diets with varying degrees of tryptophan restriction: control (100% requirements), 70% tryptophan (70TRP), 40% tryptophan (40TRP), or 10% tryptophan (10TRP) for 21 days. The sympathetic system was challenged with a subcutaneous injection of propranolol on days 15 to 17. Measurements included food intake, energy expenditure, body composition, metabolic hormones, and fecal concentrations of select bacteria. RESULTS: Moderate tryptophan restriction (70TRP) induced thermogenesis without altering body composition, whereas severe degrees of restriction (40TRP, 10TRP) produced profound hypophagia and decreased energy expenditure and body weight. The thermogenic effects of moderate tryptophan restriction were sympathetically mediated. Severe tryptophan restriction decreased fasting circulating concentrations of glucose, insulin, C-peptide, and leptin, but increased glucagon, pancreatic polypeptide, and glucagon-like peptide-1. Severe tryptophan restriction decreased fecal concentrations of Enterobacteriaceae, Lactobacillus, Bacteroides, and Clostridium coccoides while increasing Roseburia groups. CONCLUSIONS: Our findings demonstrate that dietary tryptophan restriction dose-dependently modulates energy balance, with severe restriction causing hypophagia and weight loss and moderate restriction promoting sympathetically driven thermogenesis as well as concurrent changes in gut microbiota and hormones.


Subject(s)
Diet/methods , Energy Metabolism/physiology , Tryptophan/metabolism , Weight Loss/physiology , Animals , Male , Microbiota , Obesity/metabolism , Rats , Tryptophan/adverse effects
19.
FASEB J ; 32(2): 850-861, 2018 02.
Article in English | MEDLINE | ID: mdl-29042449

ABSTRACT

Dairy proteins-whey protein, in particular-are satiating and often recommended for weight control; however, little is known about the mechanisms by which whey protein and its components promote satiety and weight loss. We used diet-induced obese rats to determine whether the hypophagic effects of diets that are enriched with whey and its fractions, lactalbumin and lactoferrin, are mediated by the gut hormone, peptide YY (PYY). We demonstrate that high protein diets that contain whey, lactalbumin, and lactoferrin decreased food intake and body weight with a concurrent increase in PYY mRNA abundance in the colon and/or plasma PYY concentrations. Of importance, blockade of PYY neuropeptide Y receptor subtype 2 (Y2) receptors with a peripherally restricted antagonist attenuated the hypophagic effects of diets that are enriched with whey protein fractions. Diets that are enriched with whey fractions were less preferred; however, in a modified conditioned taste preference test, PYY Y2 receptor blockade induced hyperphagia of a lactoferrin diet, but caused a reduction in preference for Y2 antagonist-paired flavor, which suggested that PYY signaling is important for lactoferrin-induced satiety, but not essential for preference for lactoferrin-enriched diets. Taken together, these data provide evidence that the satiety of diets that are enriched with whey protein components is mediated, in part, via enhanced PYY secretion and action in obese male rats.-Zapata, R. C., Singh, A., Chelikani, P. K. Peptide YY mediates the satiety effects of diets enriched with whey protein fractions in male rats.


Subject(s)
Body Weight/drug effects , Eating/drug effects , Peptide YY/metabolism , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Safety , Whey Proteins/pharmacology , Animals , Feeding Behavior/drug effects , Hyperphagia/metabolism , Hyperphagia/pathology , Male , Rats , Receptors, Gastrointestinal Hormone/metabolism
20.
Sci Rep ; 7(1): 9917, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855697

ABSTRACT

Whey protein promotes weight loss and improves diabetic control, however, less is known of its bioactive components that produce such benefits. We compared the effects of normal protein (control) diet with high protein diets containing whey, or its fractions lactalbumin and lactoferrin, on energy balance and metabolism. Diet-induced obese rats were randomized to isocaloric diets: Control, Whey, Lactalbumin, Lactoferrin, or pair-fed to lactoferrin. Whey and lactalbumin produced transient hypophagia, whereas lactoferrin caused prolonged hypophagia; the hypophagia was likely due to decreased preference. Lactalbumin decreased weight and fat gain. Notably, lactoferrin produced sustained weight and fat loss, and attenuated the reduction in energy expenditure associated with calorie restriction. Lactalbumin and lactoferrin decreased plasma leptin and insulin, and lactalbumin increased peptide YY. Whey, lactalbumin and lactoferrin improved glucose clearance partly through differential upregulation of glucoregulatory transcripts in the liver and skeletal muscle. Interestingly, lactalbumin and lactoferrin decreased hepatic lipidosis partly through downregulation of lipogenic and/or upregulation of ß-oxidation transcripts, and differentially modulated cecal bacterial populations. Our findings demonstrate that protein quantity and quality are important for improving energy balance. Dietary lactalbumin and lactoferrin improved energy balance and metabolism, and decreased adiposity, with the effects of lactoferrin being partly independent of caloric intake.


Subject(s)
Diet , Lactalbumin/pharmacology , Lactoferrin/pharmacology , Whey Proteins/pharmacology , Adiposity/drug effects , Animals , Body Weight/drug effects , Energy Intake/drug effects , Energy Metabolism/drug effects , Insulin/blood , Lactalbumin/administration & dosage , Lactoferrin/administration & dosage , Leptin/blood , Male , Obesity/prevention & control , Peptide YY/blood , Rats , Whey Proteins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...