Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; 694: 133602, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31382175

ABSTRACT

The recently approved European Union (EU) Circular Economy Package intends to boost the production of fertilizing products, such as composts obtained from urban wastes (UWC) and the harmonization of their quality standards (certification), to avoid market rejection. UWC quality assessment frameworks in Europe, including the Portuguese and EU latest proposal on regulation of UWC production/commercialization are mostly based on physical-chemical and agronomical characterization. These do not provide any insight on the fraction of contaminant/mixture of contaminants bioavailable for non-target organisms, nor the existence of potential antagonistic and/or synergistic effects on them. The main objective of the present work if to evaluate the effects of UWC application on crop soils using seven standard ecotoxicological tests. Five UWC, two derived from source-separated organic wastes and three from mixed urban wastes were selected and tested using a battery of ISO guideline assays with plants and soil invertebrates. The tested doses intended to simulate over-use and repeated application scenarios, common practices among farmers. The results showed that the highest toxicity was observed for the UWC originated from source-separated organic wastes, when using concentrations slightly above the maximum annual doses. Excepting for this UWC, all the derived NOEC (No Observed Effect Concentration) were equal or higher than the maximum annual doses. The UWC toxicity for the tested species increased as follows: T. aestivum < L. sativa < E. crypticus < F. candida < E. andrei. UWC salinity, rather than the content of potentially toxic elements (PTEs), could explain the negative effects observed, considering that the composts are all equally stabilized. These results reinforce the need to include data from biological susceptibility of the receptors at risk on the existing regulation, to obtain a more realistic view of the potential risks and to adapt the UWC application practices, ultimately boosting the confidence of target-consumers.


Subject(s)
Composting/standards , Soil Pollutants , Waste Products , Animals , Cities , Composting/methods , Ecotoxicology , Europe , Invertebrates , Plants
2.
Ecotoxicol Environ Saf ; 181: 534-547, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31234068

ABSTRACT

Despite the increasing use of pesticides in tropical countries, research and legislative efforts have focused on their temperate counterparts. This paper presents a review of the literature on environmental risk assessment of pesticides for tropical terrestrial agroecosystems. It aims at evaluating potential differences in pesticide risk between temperate and tropical regions as well as to highlight research needs in the latter. Peculiarities of pesticide risks in tropical terrestrial agroecosystems are discussed in subsections 1) agricultural practices; 2) research efforts; 3) fate and exposure; 4) toxicity testing methods; and 5) sensitivity. The intensive and often inadequate pesticide application practices in tropical areas are likely to result in a relatively greater pesticide exposure in edge-of-field water bodies. Since pesticide fate may be different under tropical conditions, tropical scenarios for models estimating predicted environmental pesticide concentrations should be developed. Sensitivity comparisons do not indicate a consistent similar, greater or lower relative sensitivity of tropical soil organisms as compared to temperate organisms. However, several methods and procedures for application in the tropics need to be developed, which include: 1) identifying and collecting natural soils to be used as reference test substrates in tests; 2) identifying and discerning the range of sensitivity of native test species to soil contaminants; 3) developing test guidelines applicable to tropical/subtropical conditions; and 4) developing methods and procedures for higher tier testing for full development and implementation of environmental risk assessment schemes.


Subject(s)
Ecosystem , Pesticides/toxicity , Soil Pollutants/toxicity , Toxicity Tests/standards , Tropical Climate , Agriculture , Environmental Biomarkers , Risk Assessment , Soil/chemistry
3.
Ecotoxicol Environ Saf ; 181: 395-403, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31212188

ABSTRACT

The aims of this work was to investigate, in soil microcosms, the effects on soil microbial community structure and function of increasing concentrations of 4-Nonylphenol (NP). The lasts is a product of degradation of NPEOs (Nonylphenol polyethoxylates) with a known toxic and estrogenic capacity able to disrupt animal's hormonal systems. The effect of increasing concentrations of NP (0, 10, 30, 90, and 270 mg NP kg-1 of dry soil) in soil microcosms in three sampling dates (28, 56, and 112 days) over soil microbial activity and function were assessed. Soil microbial activity was estimated by microbial ATP content, and both bacterial and fungal communities composition were estimated using the terminal restriction fragment length polymorphism technique (T-RFLP). Abundance of ammonia-oxidizing bacteria (AOB) was estimated by qPCR of gene encoding for the bacterial ammonia-monoxygenase (amoA). Changes in biologically mediated soil properties were also assessed, namely water-soluble NH+4, NO-2 and NO-3 content, the two last allowing the assessment of mineralization rates. NP-spiking had some unexpected impacts on microbial community structure and functions, since (i) impacted both bacterial and fungal communities structure at the highest NP concentration tested, bacterial communities were resistant to lower concentrations, while fungal communities were increasingly impacted until the end of the incubation at day 112; (ii) no community structure resilience was observed in bacteria at the highest NP concentration nor for fungi at any concentration; (iii) microbial activity decreased with NP after 28 and 56 d, but increased in the last sampling at the highest concentrations tests, coupled to an enrichment in AOB taxa after 56 and 112 days, that at least partly explain also explain the observed speed up of nitrification rates.


Subject(s)
Estrogens, Non-Steroidal/toxicity , Microbiota/drug effects , Nitrogen , Phenols/toxicity , Soil Microbiology , Soil Pollutants/toxicity , Ammonia/analysis , Ammonia/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Fungi/genetics , Fungi/isolation & purification , Minerals , Nitrates/analysis , Nitrification , Nitrites/analysis , Soil/chemistry
4.
Environ Toxicol Chem ; 38(7): 1569-1576, 2019 07.
Article in English | MEDLINE | ID: mdl-30985941

ABSTRACT

The use of organic wastes as soil amendments can be an important measure to improve soil quality and reduce waste accumulation and landfilling. However, the potential contaminant loads of such wastes, can be a source of environmental concern. Consequently, legislation has been developed to regulate the use of these wastes in agricultural soils. However, the regulations only consider chemical parameters, which are insufficient to establish the level of environmental risk. A possible solution is the use of species sensitivity distributions (SSDs), employing ecotoxicological data from test batteries that could be incorporated into legislation. In the present study, 2 different hazardous concentrations affecting 5 and 50% of the soil community (HC5 and HC50, respectively) were determined using ecotoxicological data (effect concentrations, 10 and 50% [EC10 and EC50, respectively]) for 5 different wastes. The results demonstrate that, as expected, current legislative thresholds do not translate to environmental risk/protection and that SSDs may be an important tool allowing the simple inclusion and interpretation of ecotoxicological data from test batteries in legislation. On the other hand, SSDs must be used with caution because there are still doubts about their actual value in risk prediction and about which estimates provide adequate protection. For instance, the use of HC50EC10 values is not recommended; these values overlap with the more conservative HC5EC50 data, highlighting the fact that the use of lower effect concentrations may not always provide the most protective approach. Also, hazardous concentrations need to be calibrated at the field or semifield level, to verify environmental protection in different soils/environments and the adequacy of standard test organisms. Environ Toxicol Chem 2019;38:1569-1576. © 2019 SETAC.


Subject(s)
Sewage/chemistry , Soil Pollutants/chemistry , Animals , Annelida/drug effects , Annelida/physiology , Arachnida/drug effects , Arachnida/physiology , Lactuca/drug effects , Lactuca/growth & development , Lactuca/metabolism , Lolium/drug effects , Lolium/growth & development , Lolium/metabolism , Metals/chemistry , Metals/toxicity , Reproduction/drug effects , Soil Pollutants/toxicity , Species Specificity
5.
Environ Toxicol Chem ; 36(7): 1795-1810, 2017 07.
Article in English | MEDLINE | ID: mdl-28295568

ABSTRACT

Soils from some Latin American countries support the highest biodiversity levels on the planet and simultaneously have some of the most serious environmental impacts attributed to both historical and current agricultural practices and industrial activities. Soil contamination has resulted from intensive use of pesticides, extensive mining and other industrial activities, and uncontrolled management of waste within inappropriate regulatory frameworks. The present study presents an overview of the scientific research on soil ecotoxicology conducted in Latin America, summarizing the recent advances and highlighting the needs for further refinements in this research field. Most of the contributions to the scientific literature have been from Brazil. The most investigated issue is the ecotoxicity of pesticides and earthworms, which were the organisms most frequently used as test species. Needs identified by Latin American researchers include methods and procedures for: 1) identifying and collecting natural soils to be used as reference test-substrates in tests, 2) identifying and discerning the range of sensitivities of native test species to soil contaminants, 3) developing environmental guidelines applicable to tropical/subtropical conditions, and 4) developing methods and procedures for higher tier testing for full development and implementation of environmental risk assessment schemes. The protection of Latin American soils, including provision of goods and services, is currently framed in legislation and other regulations, but implementation requires significant improvement and additional training programs. Environ Toxicol Chem 2017;36:1795-1810. © 2017 SETAC.


Subject(s)
Soil Pollutants/toxicity , Soil/chemistry , Animals , Environmental Pollution , Government Regulation , Isopoda/drug effects , Latin America , Oligochaeta/drug effects , Pesticides/chemistry , Pesticides/toxicity , Risk Assessment , Soil Pollutants/chemistry
6.
J Hazard Mater ; 330: 149-156, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28279835

ABSTRACT

Using organic wastes, as soil amendments, is an important alternative to landfilling with benefits to soil structure, water retention, soil nutrient and organic matter concentrations. However, this practice should be monitored for its environmental risk due to the frequent presence, of noxious substances to soil organisms. To evaluate the potential of eight organic wastes with different origins, as soil amendments, reproduction tests with four soil invertebrate species (Folsomia candida, Enchytraeus crypticus, Hypoaspis aculeifer, Eisenia fetida) were performed using gradients of soil-waste mixtures. Results obtained demonstrated that contaminant concentrations required by current legislation might not be a protective measure for the soil ecosystem, as they do not properly translate the potential toxicity of wastes to soil invertebrates. Some wastes with contaminant loadings below thresholds showed higher toxicity than wastes with contaminants concentrations above legal limits. Also, test organism reproduction was differently sensitive to the selected wastes, which highlights the need to account for different organism sensitivities and routes of exposure when evaluating the toxicity of such complex mixtures. Finally this study shows that when combining chemical and ecotoxicological data, it is possible to postulate on potential sources of toxicity, contributing to better waste management practices and safer soil organic amendment products.


Subject(s)
Annelida/drug effects , Arthropods/drug effects , Soil , Waste Products/adverse effects , Animals , Reproduction/drug effects , Waste Products/analysis
7.
Integr Environ Assess Manag ; 12(1): 58-66, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26411378

ABSTRACT

Current risk assessment methods for measuring the toxicity of plant protection products (PPPs) on soil invertebrates use standardized laboratory conditions to determine acute effects on mortality and sublethal effects on reproduction. If an unacceptable risk is identified at the lower tier, population-level effects are assessed using semifield and field trials at a higher tier because modeling methods for extrapolating available lower-tier information to population effects have not yet been implemented. Field trials are expensive, time consuming, and cannot be applied to variable landscape scenarios. Mechanistic modeling of the toxicological effects of PPPs on individuals and their responses combined with simulation of population-level response shows great potential in fulfilling such a need, aiding ecologically informed extrapolation. Here, we introduce and demonstrate the potential of 2 population models for ubiquitous soil invertebrates (collembolans and earthworms) as refinement options in current risk assessment. Both are spatially explicit agent-based models (ABMs), incorporating individual and landscape variability. The models were used to provide refined risk assessments for different application scenarios of a hypothetical pesticide applied to potato crops (full-field spray onto the soil surface [termed "overall"], in-furrow, and soil-incorporated pesticide applications). In the refined risk assessment, the population models suggest that soil invertebrate populations would likely recover within 1 year after pesticide application, regardless of application method. The population modeling for both soil organisms also illustrated that a lower predicted average environmental concentration in soil (PECsoil) could potentially lead to greater effects at the population level, depending on the spatial heterogeneity of the pesticide and the behavior of the soil organisms. Population-level effects of spatial-temporal variations in exposure were elucidated in the refined risk assessment, using ABMs and population-level endpoints while yielding outputs that directly address the protection goals. We recommend choosing model outputs that are closely related to specific protection goals, using available toxicity data and accepted fate models to the extent possible in parameterizing models to minimize additional data needs and testing, evaluating, and documenting models following recent guidance.


Subject(s)
Agrochemicals/toxicity , Environmental Exposure , Models, Biological , Oligochaeta , Pesticides/toxicity , Soil , Animals , Ecology , Risk Assessment
8.
Sci Total Environ ; 505: 161-71, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25461018

ABSTRACT

The present study is aimed at evaluating whether a gene expression assay with the microbial eukaryotic model Saccharomyces cerevisiae could be used as a suitable warning tool for the rapid preliminary screening of potential toxic effects on organisms due to scenarios of soil and water contamination with pyrimethanil. The assay consisted of measuring changes in the expression of the selected pyrimethanil-responsive genes ARG3 and ARG5,6 in a standardized yeast population. Evaluation was held by assessing the toxicity of surface runoff, a major route of pesticide exposure in aquatic systems due to non-point-source pollution, which was simulated with a pyrimethanil formulation at a semifield scale mimicking worst-case scenarios of soil contamination (e.g. accident or improper disposal). Yeast cells 2-h exposure to the runoff samples led to a significant 2-fold increase in the expression of both indicator genes. These results were compared with those from assays with organisms relevant for the aquatic and soil compartments, namely the nematode Caenorhabditis elegans (reproduction), the freshwater cladoceran Daphnia magna (survival and reproduction), the benthic midge Chironomus riparius (growth), and the soil invertebrates Folsomia candida and Enchytraeus crypticus (survival and reproduction). Under the experimental conditions used to simulate accidental discharges into soil, runoff waters were highly toxic to the standard test organisms, except for C. elegans. Overall, results point out the usefulness of the yeast assay to provide a rapid preview of the toxicity level in preliminary screenings of environmental samples in situations of inadvertent high pesticide contamination. Advantages and limitations of this novel method are discussed.


Subject(s)
Pesticides/toxicity , Pyrimidines/toxicity , Saccharomyces cerevisiae/drug effects , Toxicity Tests/methods , Biological Assay , Environmental Monitoring/methods , Soil Pollutants/toxicity , Water Pollutants, Chemical/toxicity
9.
Environ Toxicol Chem ; 31(7): 1564-72, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22504825

ABSTRACT

The present study evaluated the bioremediation efficacy of a cleanup tool for atrazine-contaminated soils (Pseudomonas sp. ADP plus citrate [P. ADP + CIT]) at a semifield scale, combining chemical and ecotoxicological information. Three experiments representing worst-case scenarios of atrazine contamination for soil, surface water (due to runoff), and groundwater (due to leaching) were performed in laboratory simulators (100 × 40 × 20 cm). For each experiment, three treatments were set up: bioremediated, nonbioremediated, and a control. In the first, the soil was sprayed with 10 times the recommended dose (RD) for corn of Atrazerba and with P. ADP + CIT at day 0 and a similar amount of P. ADP at day 2. The nonbioremediated treatment consisted of soil spraying with 10 times the RD of Atrazerba (day 0). After 7 d of treatment, samples of soil (and eluates), runoff, and leachate were collected for ecotoxicological tests with plants (Avena sativa and Brassica napus) and microalgae (Pseudokirchneriella subcapitata) species. In the nonbioremediated soils, atrazine was very toxic to both plants, with more pronounced effects on plant growth than on seed emergence. The bioremediation tool annulled atrazine toxicity to A. sativa (86 and 100% efficacy, respectively, for seed emergence and plant growth). For B. napus, results point to incomplete bioremediation. For the microalgae, eluate and runoff samples from the nonbioremediated soils were extremely toxic; a slight toxicity was registered for leachates. After only 7 d, the ecotoxicological risk for the aquatic compartments seemed to be diminished with the application of P. ADP + CIT. In aqueous samples obtained from the bioremediated soils, the microalgal growth was similar to the control for runoff samples and slightly lower than control (by 11%) for eluates.


Subject(s)
Atrazine/metabolism , Herbicides/metabolism , Pseudomonas/metabolism , Soil Pollutants/metabolism , Avena/drug effects , Biodegradation, Environmental , Brassica napus/drug effects , Citric Acid/chemistry , Ecotoxicology , Microalgae/drug effects , Soil/chemistry , Soil Microbiology , Toxicity Tests
10.
Environ Toxicol Chem ; 31(2): 437-45, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22068639

ABSTRACT

The aim of the present study is to contribute an ecologically relevant assessment of the ecotoxicological effects of pesticide applications in agricultural areas in the tropics, using an integrated approach with information gathered from soil and aquatic compartments. Carbofuran, an insecticide/nematicide used widely on sugarcane crops, was selected as a model substance. To evaluate the toxic effects of pesticide spraying for soil biota, as well as the potential indirect effects on aquatic biota resulting from surface runoff and/or leaching, field and laboratory (using a cost-effective simulator of pesticide applications) trials were performed. Standard ecotoxicological tests were performed with soil (Eisenia andrei, Folsomia candida, and Enchytraeus crypticus) and aquatic (Ceriodaphnia silvestrii) organisms, using serial dilutions of soil, eluate, leachate, and runoff samples. Among soil organisms, sensitivity was found to be E. crypticus < E. andrei < F. candida. Among the aqueous extracts, mortality of C. silvestrii was extreme in runoff samples, whereas eluates were by far the least toxic samples. A generally higher toxicity was found in the bioassays performed with samples from the field trial, indicating the need for improvements in the laboratory simulator. However, the tool developed proved to be valuable in evaluating the toxic effects of pesticide spraying in soils and the potential risks for aquatic compartments.


Subject(s)
Carbofuran/toxicity , Insecticides/toxicity , Soil Pollutants/toxicity , Water Pollutants, Chemical/toxicity , Agriculture , Animals , Arthropods , Biological Assay , Brazil , Ecology , Ecosystem , Oligochaeta/drug effects , Risk Assessment , Soil/chemistry , Soil Microbiology , Tropical Climate
11.
Ecotoxicol Environ Saf ; 74(7): 2002-12, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21868095

ABSTRACT

This work intends to implement the use of native soil nematode communities in ecotoxicological tests using a model pesticide and two geographically nematode communities (Mediterranean and sub-tropical) in order to obtain new perspectives on the evaluation of the toxic potential of chemical substances. The environmental condition of the nematode communities was described using a trait-based approach (grouping the organisms according to their feeding traits) and a traditional taxonomic method (identification to family level). Effects on total nematode abundance, number of families and abundance of nematode feeding groups as well as potential shifts in both trophic and family structure were assessed. Agricultural soils from Curitiba (Brazil) and Coimbra (Portugal) were sampled and the corresponding nematode communities were extracted. Part of the collected soil was defaunated and spiked with four doses of a carbofuran commercial formulation. Afterwards each of the replicates was inoculated with a nematode suspension containing ≈200 or 300 nematodes. After 14 and 28 d of exposure the nematodes were extracted, counted and identified at family level and separately classified according to their feeding traits. The patterns of nematode responses revealed a decrease in the total abundance and a reduction in the number of families. Despite the similar effects observed for both communities, statistically significant toxic effects were only found within the Portuguese community. The total nematode abundance was significantly reduced at the highest carbofuran concentrations and significant shifts in the family structure were detected. However, the trophic structure, i.e., the contribution of each feeding group for the overall community structure, did not significantly change along the contamination gradient. Results showed that using such a trait-based approach may increase the ecological relevance of toxicity data, by establishing communalities in the response to a chemical from two different taxonomic communities, although with potential loss of information on biodiversity of the communities.


Subject(s)
Carbofuran/toxicity , Ecotoxicology/methods , Nematoda/drug effects , Pesticides/toxicity , Soil Pollutants/toxicity , Animals , Brazil , Feeding Behavior , Nematoda/classification , Nematoda/physiology , Portugal , Soil
12.
Environ Toxicol Chem ; 30(7): 1497-505, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21437938

ABSTRACT

Nineteen Mediterranean natural soils with a wide range of properties and the Organisation for Economic Co-operation and Development (OECD) artificial soil were used to assess the influence of soil properties on the results of avoidance and reproduction tests carried out with the soil collembolan species Folsomia candida. Compared to natural soils, the OECD soil was mostly rejected by individuals when a natural soil was offered in avoidance tests, and the number of offspring produced was generally lower than the one obtained in natural soils. None of the soil properties assessed showed a significant influence on the avoidance behavior. More precisely, only soil moisture was included in the model explaining the avoidance response (avoidance increased with increasing differences in moisture), but its contribution was marginally not significant. The model derived explained only 16% of the variance in avoidance response. On the contrary, several soil properties significantly influenced reproduction (number of offspring increased with increasing moisture content, increasing coarse texture, and decreasing nitrogen content). In this case, the model explained 45% of the variance in reproduction. These results, together with the fact that most of the selected soils fulfilled the validity criteria in both avoidance and reproduction tests, confirm the literature experience showing that this species is relatively insensitive to soil properties and hence highly suitable to be used in ecotoxicological tests with natural soils. In addition, our study highlights the need for accuracy in soil moisture adjustment in soil ecotoxicological tests with this species. Otherwise, results of both avoidance and reproduction tests might be biased.


Subject(s)
Arthropods/drug effects , Soil Pollutants/toxicity , Soil/chemistry , Aluminum Silicates/analysis , Animals , Avoidance Learning , Clay , Ecotoxicology , Hydrogen-Ion Concentration , Mediterranean Region , Nitrogen/analysis , Reproduction , Toxicity Tests
13.
Environ Toxicol Chem ; 30(5): 1050-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21305581

ABSTRACT

A current challenge in soil ecotoxicology is the use of natural soils as test substrates to increase ecological relevance of data. Despite the existence of six natural reference soils (the Euro-soils), some parallel projects showed that these soils do not accurately represent the diversity of European soils. Particularly, Mediterranean soils are not properly represented. To fill this gap, 12 natural soils from the Mediterranean regions of Alentejo, Portugal; Cataluña, Spain; and Liguria, Italy, were selected and used in reproduction and avoidance tests to evaluate the soil habitat function for earthworms (Eisenia andrei) and enchytraeids (Enchytraeus crypticus). Predictive models on the influence of soil properties on the responses of these organisms were developed using generalized linear models. Results indicate that the selected soils can impact reproduction and avoidance behavior of both Oligochaete species. Reproduction of enchytraeids was affected by different soil properties, but the test validity criteria were fulfilled. The avoidance response of enchytraeids was highly variable, but significant effects of texture and pH were found. Earthworms were more sensitive to soil properties. They did not reproduce successfully in three of the 10 soils, and a positive influence of moisture, fine sand, pH, and organic matter and a negative influence of clay were found. Moreover, they strongly avoided soils with extreme textures. Despite these limitations, most of the selected soils are suitable substrates for ecotoxicological evaluations.


Subject(s)
Oligochaeta/drug effects , Soil Pollutants/toxicity , Soil/chemistry , Animals , Avoidance Learning , Behavior, Animal/drug effects , Environmental Monitoring , Hydrogen-Ion Concentration , Linear Models , Mediterranean Region , Reproduction/drug effects , Risk Assessment , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL