Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Front Physiol ; 12: 708905, 2021.
Article in English | MEDLINE | ID: mdl-34671266

ABSTRACT

Methylsulfonylmethane (MSM) is a naturally occurring anti-inflammatory compound that effectively treats multiple degenerative diseases such as osteoarthritis and acute pancreatitis. Our previous studies have demonstrated the ability of MSM to differentiate stem cells from human exfoliated deciduous (SHED) teeth into osteoblast-like cells. This study examined the systemic effect of MSM in 36-week-old aging C57BL/6 female mice in vivo by injecting MSM for 13 weeks. Serum analyses showed an increase in expression levels of bone formation markers [osteocalcin (OCN) and procollagen type 1 intact N-terminal propeptide (P1NP)] and a reduction in bone resorption markers [tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collag (CTX-I)] in MSM-injected animals. Micro-computed tomographic images demonstrated an increase in trabecular bone density in mandibles. The trabecular bone density tended to be higher in the femur, although the increase was not significantly different between the MSM- and phosphate-buffered saline (PBS)-injected mice. In mandibles, an increase in bone density with a corresponding decrease in the marrow cavity was observed in the MSM-injected mice. Furthermore, immunohistochemical analyses of the mandibles for the osteoblast-specific marker - OCN, and the mesenchymal stem cell-specific marker - CD105 showed a significant increase and decrease in OCN and CD105 positive cells, respectively. Areas of bone loss were observed in the inter-radicular region of mandibles in control mice. However, this loss was considerably decreased due to stimulation of bone formation in response to MSM injection. In conclusion, our study has demonstrated the ability of MSM to induce osteoblast formation and function in vivo, resulting in increased bone formation in the mandible. Hence, the application of MSM and stem cells of interest may be the right combination in alveolar bone regeneration under periodontal or other related diseases that demonstrate bone loss.

2.
Cells ; 10(9)2021 09 15.
Article in English | MEDLINE | ID: mdl-34572081

ABSTRACT

Tumor necrosis factor-alpha (TNF-α) signaling regulates phosphorylation of L-plastin, which is involved in forming the nascent sealing zone, a precursor zone for the matured sealing ring. This study aimed to illustrate the molecular mechanisms of L-plastin phosphorylation and the subsequent formation of the nascent sealing zone in osteoclasts treated with TNF-α. Here, we report that anti-TNF-receptor 1, inhibitors of signaling proteins (Src, PI3-K, Rho, and Rho-kinase), and siRNA of TRAF-6 attenuated the phosphorylation of LPL and filamentous actin content significantly in the presence of TNF-α. An inhibitor of integrin αvß3, PKC, or PKA did not inhibit TNF-α-induced L-plastin phosphorylation. Inhibitors of Src and PI3-K and not Rho or Rho-kinase reduced tyrosine phosphorylation of TRAF-6, suggesting that Src and PI3-K regulate TRAF-6 phosphorylation, and Rho and Rho-kinase are downstream of TRAF-6 regulation. Osteoclasts expressing constitutively active or kinase-defective Src proteins were used to determine the role of Src on L-plastin phosphorylation; similarly, the effect of Rho was confirmed by transducing TAT-fused constitutively active (V14) or dominant-negative (N19) Rho proteins into osteoclasts. Pull-down analysis with glutathione S-transferase-fused SH2 and SH3 domains of Src and PI3-K demonstrated coprecipitation of L-plastin and TRAF-6 with the SH3 and SH2 domains of the PI3-K and Src proteins. However, the actual order of the interaction of proteins requires further elucidation; a comprehensive screening should corroborate the initial findings of protein interactions via the SH2/SH3 domains. Ultimately, inhibition of the interaction of proteins with SH2/SH3 could reduce L-plastin phosphorylation and affect NSZ formation and bone resorption in conditions that display osteoclast activation and bone loss.


Subject(s)
Membrane Glycoproteins/metabolism , Microfilament Proteins/metabolism , Osteoclasts/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Actins/metabolism , Animals , Bone Resorption/metabolism , Mice , Mice, Inbred C57BL , Osteoclasts/cytology , Osteoclasts/drug effects , Phosphorylation/drug effects , Protein Interaction Domains and Motifs/drug effects , Receptors, Tumor Necrosis Factor, Type I/drug effects , Signal Transduction/drug effects , TNF Receptor-Associated Factor 6/metabolism , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , src Homology Domains/drug effects , src-Family Kinases/metabolism
3.
Bone Res ; 9(1): 22, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33837180

ABSTRACT

L-plastin (LPL) was identified as a potential regulator of the actin-bundling process involved in forming nascent sealing zones (NSZs), which are precursor zones for mature sealing zones. TAT-fused cell-penetrating small molecular weight LPL peptide (TAT- MARGSVSDEE, denoted as an inhibitory LPL peptide) attenuated the formation of NSZs and impaired bone resorption in vitro in osteoclasts. Also, the genetic deletion of LPL in mice demonstrated decreased eroded perimeters and increased trabecular bone density. In the present study, we hypothesized that targeting LPL with the inhibitory LPL peptide in vivo could reduce osteoclast function and increase bone density in a mice model of low bone mass. We injected aging C57BL/6 female mice (36 weeks old) subcutaneously with the inhibitory and scrambled peptides of LPL for 14 weeks. Micro-CT and histomorphometry analyses demonstrated an increase in trabecular bone density of femoral and tibial bones with no change in cortical thickness in mice injected with the inhibitory LPL peptide. A reduction in the serum levels of CTX-1 peptide suggests that the increase in bone density is associated with a decrease in osteoclast function. No changes in bone formation rate and mineral apposition rate, and the serum levels of P1NP indicate that the inhibitory LPL peptide does not affect osteoblast function. Our study shows that the inhibitory LPL peptide can block osteoclast function without impairing the function of osteoblasts. LPL peptide could be developed as a prospective therapeutic agent to treat osteoporosis.

4.
BMC Immunol ; 22(1): 23, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33765924

ABSTRACT

BACKGROUND: Lipopolysaccharide (LPS) is an endotoxin and a vital component of gram-negative bacteria's outer membrane. During gram-negative bacterial sepsis, LPS regulates osteoclast differentiation and activity, in addition to increasing inflammation. This study aimed to investigate how LPS regulates osteoclast differentiation of RAW 264.7 cells in vitro. RESULTS: Herein, we revealed that RAW cells failed to differentiate into mature osteoclasts in vitro in the presence of LPS. However, differentiation occurred in cells primed with receptor activator of nuclear factor-kappa-Β ligand (RANKL) for 24 h and then treated with LPS for 48 h (henceforth, denoted as LPS-treated cells). In cells treated with either RANKL or LPS, an increase in membrane levels of toll-like receptor 4 (TLR4) receptor was observed. Mechanistically, an inhibitor of TLR4 (TAK-242) reduced the number of osteoclasts as well as the secretion of tumor necrosis factor (TNF)-α in LPS-treated cells. RANKL-induced RAW cells secreted a very basal level TNF-α. TAK-242 did not affect RANKL-induced osteoclastogenesis. Increased osteoclast differentiation in LPS-treated osteoclasts was not associated with the RANKL/RANK/OPG axis but connected with the LPS/TLR4/TNF-α tumor necrosis factor receptor (TNFR)-2 axis. We postulate that this is because TAK-242 and a TNF-α antibody suppress osteoclast differentiation. Furthermore, an antibody against TNF-α reduced membrane levels of TNFR-2. Secreted TNF-α appears to function as an autocrine/ paracrine factor in the induction of osteoclastogenesis independent of RANKL. CONCLUSION: TNF-α secreted via LPS/TLR4 signaling regulates osteoclastogenesis in macrophages primed with RANKL and then treated with LPS. Our findings suggest that TLR4/TNF-α might be a potential target to suppress bone loss associated with inflammatory bone diseases, including periodontitis, rheumatoid arthritis, and osteoporosis.


Subject(s)
Bacteroidaceae Infections/immunology , Macrophages/physiology , Osteoclasts/physiology , Porphyromonas gingivalis/physiology , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Animals , Bone Resorption , Inflammation , Lipopolysaccharides/metabolism , Mice , Osteogenesis , RAW 264.7 Cells , Signal Transduction , Sulfonamides/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
5.
Cancer Drug Resist ; 3(3): 586-602, 2020.
Article in English | MEDLINE | ID: mdl-33062960

ABSTRACT

AIM: The Cluster of differentiation 44 (CD44) transmembrane protein is cleaved by γ-secretase, the inhibition of which blocks CD44 cleavage. This study aimed to determine the biological consequence of CD44 cleavage and its potential interaction with Runt-related transcription factor (RUNX2) in a sequence-specific manner in PC3 prostate cancer cells. METHODS: Using full-length and C-terminal deletion constructs of CD44-ICD (D1-D5) expressed as stable green fluorescent protein-fusion proteins in PC3 cells, we located possible RUNX2-binding sequences. RESULTS: Chromatin immunoprecipitation assays demonstrated that the C-terminal amino acid residues between amino acids 671 and 706 in D1 to D3 constructs were indispensable for sequence-specific binding of RUNX2. This binding was minimal for sequences in the D4 and D5 constructs. Correspondingly, an increase in matrix metalloprotease-9 (MMP-9) expression was observed at the mRNA and protein levels in PC3 cells stably expressing D1-D3 constructs. CONCLUSION: These results provide biochemical evidence for the possible sequence-specific CD44-ICD/RUNX2 interaction and its functional relationship to MMP-9 transcription in the promoter region.

6.
Sci Rep ; 10(1): 2513, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32054921

ABSTRACT

Excessive bone loss occurs in inflammatory disorders such as periodontitis and osteoporosis. The underlying mechanism is related to the differentiation of macrophages into multinucleated giant osteoclasts and their bone resorptive activity. C-Phycocyanin (C-PC) is a phycobiliprotein extracted from the blue-green algae, which has been shown to have various pharmacological effects. The role of C-PC on bone metabolism needs revelation. In this study, we determined the effectiveness of C-PC as an inhibitor of osteoclast differentiation, activity, and survival in vitro. We found that C-PC strongly inhibited the differentiation of macrophages to TRAP-positive osteoclasts, distinctive osteoclast specific podosomal organization, and dentine matrix resorption without any cytotoxicity. Also, it suppressed the expression of osteoclast specific markers, such as cathepsin K and integrin ß3 at mRNA and protein levels. RANKL mediated signaling utilizes reactive oxygen species (ROS) for the differentiation of osteoclasts. C-PC attenuated RANKL stimulated ROS. Mechanistic studies indicate that C-PC has the potential to reduce osteoclast formation via blocking the degradation of cytosolic IκB-α and hence, the activation of downstream markers such as c-Fos and NFATc1. However, it does not have any effect on osteoblast-mediated bone formation in vitro. Collectively, our data suggest that C-PC may be utilized as a therapeutic agent that can target bone loss mediated by excessive osteoclastic bone resorption without affecting osteoblastic activity in bone.


Subject(s)
Bone Resorption/drug therapy , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Osteogenesis/drug effects , Phycocyanin/pharmacology , RANK Ligand/metabolism , Animals , Bone Resorption/metabolism , Cell Death/drug effects , Mice , Osteoclasts/cytology , Osteoclasts/drug effects , Osteoclasts/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
7.
J Oral Biosci ; 62(2): 123-130, 2020 06.
Article in English | MEDLINE | ID: mdl-32081710

ABSTRACT

BACKGROUND: Periodontitis is the inflammation of the tooth-supporting structures and is one of the most common diseases of the oral cavity. The outcome of periodontal infections is tooth loss due to a lack of alveolar bone support. Osteoclasts are giant, multi-nucleated, and bone-resorbing cells that are central for many osteolytic diseases, including periodontitis. Receptor activator of nuclear factor-kB ligand (RANKL) is the principal factor involved in osteoclast differentiation, activation, and survival. However, under pathological conditions, a variety of pro-inflammatory cytokines secreted by activated immune cells also contribute to osteoclast differentiation and activity. Lipopolysaccharide (LPS) is a vital component of the outer membrane of the Gram-negative bacteria. It binds to the Toll-like receptors (TLRs) expressed in many cells and elicits an immune response. HIGHLIGHTS: The presence of bacterial LPS in the periodontal area stimulates the secretion of RANKL as well as other inflammatory mediators, activating the process of osteoclastogenesis. RANKL, either independently or synergistically with LPS, can regulate osteoclastogenesis, while LPS alone cannot. MicroRNA, IL-22, M1/M2 macrophages, and memory B cells have recently been shown to modulate osteoclastogenesis in periodontal diseases. CONCLUSION: In this review, we summarize the mechanism of osteoclastogenesis accompanying periodontal diseases at the cellular level. We discuss a) the effects of LPS/TLR signaling and other cytokines on RANKL-dependent and -independent mechanisms involved in osteoclastogenesis; b) the recently identified role of several endogenous factors such as miRNA, IL-22, M1/M2 macrophages, and memory B cells in regulating osteoclastogenesis during periodontal pathogenesis.


Subject(s)
Osteogenesis , RANK Ligand , Lipopolysaccharides , Macrophages , Osteoclasts
8.
Bone Res ; 8: 3, 2020.
Article in English | MEDLINE | ID: mdl-31993243

ABSTRACT

Bone resorption requires the formation of complex, actin-rich cytoskeletal structures. During the early phase of sealing ring formation by osteoclasts, L-plastin regulates actin-bundling to form the nascent sealing zones (NSZ). Here, we show that L-plastin knockout mice produce osteoclasts that are deficient in the formation of NSZs, are hyporesorptive, and make superficial resorption pits in vitro. Transduction of TAT-fused full-length L-plastin peptide into osteoclasts from L-plastin knockout mice rescued the formation of nascent sealing zones and sealing rings in a time-dependent manner. This response was not observed with mutated full-length L-plastin (Ser-5 and -7 to Ala-5 and -7) peptide. In contrast to the observed defect in the NSZ, L-plastin deficiency did not affect podosome formation or adhesion of osteoclasts in vitro or in vivo. Histomorphometry analyses in 8- and 12-week-old female L-plastin knockout mice demonstrated a decrease in eroded perimeters and an increase in trabecular bone density, without a change in bone formation by osteoblasts. This decrease in eroded perimeters supports that osteoclast function is attenuated in L-plastin knockouts. Micro-CT analyses confirmed a marked increase in trabecular bone mass. In conclusion, female L-plastin knockout mice had increased trabecular bone density due to impaired bone resorption by osteoclasts. L-plastin could be a potential target for therapeutic interventions to treat trabecular bone loss.

9.
PLoS One ; 14(12): e0225598, 2019.
Article in English | MEDLINE | ID: mdl-31805069

ABSTRACT

Methylsulfonylmethane (MSM) is a naturally occurring, sulfate-containing, organic compound. It has been shown to stimulate the differentiation of mesenchymal stem cells into osteoblast-like cells and bone formation. In this study, we investigated whether MSM influences the differentiation of stem cells from human exfoliated deciduous teeth (SHED) into osteoblast-like cells and their osteogenic potential. Here, we report that MSM induced osteogenic differentiation through the expression of osteogenic markers such as osterix, osteopontin, and RUNX2, at both mRNA and protein levels in SHED cells. An increase in the activity of alkaline phosphatase and mineralization confirmed the osteogenic potential of MSM. These MSM-induced effects were observed in cells grown in basal medium but not osteogenic medium. MSM induced transglutaminase-2 (TG2), which may be responsible for the cross-linking of extracellular matrix proteins (collagen or osteopontin), and the mineralization process. Inhibition of TG2 ensued a significant decrease in the differentiation of SHED cells and cross-linking of matrix proteins. A comparison of mineralization with the use of mineralized and demineralized bone particles in the presence of MSM revealed that mineralization is higher with mineralized bone particles than with demineralized bone particles. In conclusion, these results indicated that MSM could promote differentiation and osteogenic potential of SHED cells. This osteogenic property is more in the presence of mineralized bone particles. TG2 is a likely cue in the regulation of differentiation and mineral deposition of SHED cells in response to MSM.


Subject(s)
Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Dimethyl Sulfoxide/pharmacology , Osteogenesis/drug effects , Sulfones/pharmacology , Biomarkers/metabolism , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , GTP-Binding Proteins/metabolism , Humans , Osteopontin/metabolism , Protein Glutamine gamma Glutamyltransferase 2 , Sp7 Transcription Factor/metabolism , Stem Cells , Transglutaminases/metabolism
10.
Cell Commun Signal ; 17(1): 80, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31331331

ABSTRACT

BACKGROUND: Expression of CD44 receptor is associated with the onset of several tumors. The intracellular domain of CD44 (CD44-ICD) has been implicated as a co-transcription factor for RUNX2 in the regulation of expression of MMP-9 in breast carcinoma cells. Previous studies from our laboratory demonstrated the role of CD44 in migration and invasion of PC3 prostate cells through activation of MMP-9. CD44 signaling regulates the phosphorylation and hence the localization of RUNX2 in the nucleus. The role of CD44-ICD has not been studied in prostate cancer cells. This study aimed to explore the role of CD44-ICD and RUNX2 in the regulation of expression of metastasis-related genes. METHODS: PC3 and PC3 cells overexpressing RUNX2 protein were analyzed for RUNX2/CD44-ICD interaction by immunoprecipitation, immunoblotting, and Immunofluorescence analyses. Wound healing and tumorsphere formation analyses were also done in these cells. The real-time PCR analysis was used to detect the expression levels of different genes. RESULTS: Expression of CD44 and RUNX2 was observed only in PC3 cells (androgen receptor positive) and not in LNCaP or PCa2b cells (androgen receptor negative). Therefore, CD44-ICD fragment (~ 15-16 kDa) was observed in PC3 cells. Moreover, localization of CD44-ICD was more in the nucleus than in the cytoplasm of PC3 cells. Inhibition of cleavage of CD44 with a γ-secretase inhibitor, DAPT reduced the formation of CD44-ICD; however, accumulation of CD44-external truncation fragments (~ 20 and ~ 25 kDa) was detected. RUNX2 and CD44-ICD interact in the nucleus of PC3 cells, and this interaction was more in PC3 cells transfected with RUNX2 cDNA. Overexpression of RUNX2 augments the expression of metastasis-related genes (e.g., MMP-9 and osteopontin) which resulted in increased migration and tumorsphere formation. CONCLUSIONS: We have shown here a strong functional relationship between CD44-ICD and RUNX2 in PC3 cells. RUNX2 forms a complex with CD44-ICD as a co-transcriptional factor, and this complex formation not only activates the expression of metastasis-related genes but also contributes to migration and tumorsphere formation. Therefore, RUNX2 and CD44-ICD are potential targets for anti-cancer therapy, and attenuation of their interaction may validate the regulatory effects of these proteins on cancer migration and progression.


Subject(s)
Core Binding Factor Alpha 1 Subunit/metabolism , Hyaluronan Receptors/chemistry , Hyaluronan Receptors/metabolism , Intracellular Space/metabolism , Prostatic Neoplasms/pathology , Amyloid Precursor Protein Secretases/metabolism , Cell Nucleus/metabolism , Gene Expression Regulation, Neoplastic , Humans , Hyaluronan Receptors/genetics , Male , Matrix Metalloproteinase 2/metabolism , PC-3 Cells , Protein Binding , Protein Domains , Proteolysis , RNA, Messenger/genetics
11.
J Cell Biochem ; 120(2): 2413-2428, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30206982

ABSTRACT

Studies have shown that a subgroup of tumor cells possess stemness characteristics having self-renewal capacity and the ability to form new tumors. We sought to identify the plausible stemness factor that determines the "molecular signature" of prostate cancer (PCa) cells derived from different metastases (PC3, PCa2b, LNCaP, and DU145) and whether androgen receptor (AR) influences the maintenance of stemness features. Here we show sex-determining region Y (SRY)-box 2 (SOX2) as a putative stem cell marker in PC3 PCa cells and not in DU145, PCa2b, or LNCaP cells. PCa2b and PC3 cells were derived from bone metastases. PCa2b cells which are positive for the AR failed to demonstrate the expression of either cluster of differentiation 44 (CD44) or SOX2. Knockdown (KD) of AR in these cells did not affect the expression of either CD44 or SOX2. Conversely, PC3 cells, which are negative for AR, expressed both CD44 and SOX2. However, the expression of AR downregulated the expression of both CD44 and SOX2 in PC3 cells. CD44 regulates SOX2 expression as KD of CD44 and reduces SOX2 levels considerably. SOX2 KD attenuated not only the expression of SNAIL and SLUG but also the migration and tumorsphere formation in PC3 cells. Collectively, our findings underscore a novel role of CD44 signaling in the maintenance of stemness and progression of cancer through SOX2 in AR-independent PC3 cells. SOX2 has a role in the regulation of expression of SNAIL and SLUG. SOX2 could be a potential therapeutic target to thwart the progression of SOX2-positive cancer cells or recurrence of androgen-independent PCa.

12.
Exp Cell Res ; 372(1): 73-82, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30244178

ABSTRACT

The process of sealing ring formation requires major actin filament reorganization. We previously demonstrated that an actin-bundling protein L-plastin has a role in the cross-linking of actin filaments into tight bundles and forms actin aggregates (denoted as nascent sealing zones). These nascent sealing zones mature into fully functional sealing rings. We have shown here that TNF-alpha signaling regulates the phosphorylation of serine-5 and -7 in L-plastin which increases the actin bundling capacity of L-plastin and hence the formation of nascent sealing zones in mouse osteoclasts. Using the TAT-mediated transduction method, we confirmed the role of L-plastin in nascent sealing zones formation at the early phase of the sealing ring assembly. Transduction of TAT-fused full-length L-plastin peptide significantly increases the number of nascent sealing zones and therefore sealing rings. But, transduction of amino-terminal L-plastin peptides consisting of the serine-5 and -7 reduces the formation of both nascent sealing zones and sealing rings. Therefore, bone resorption in vitro was reduced considerably. The decrease was associated with the selective inhibition of cellular L-plastin phosphorylation by the transduced peptides. Neither the formation of podosomes nor the migration was affected in these osteoclasts. Phosphorylation of L- plastin on serine 5 and -7 residues increases the F-actin bundling capacity. The significance of our studies stands on laying the groundwork for a better understanding of L-plastin as a potential regulator at the early phase of sealing ring formation and could be a new therapeutic target to treat bone loss.


Subject(s)
Actin Cytoskeleton/metabolism , Bone Resorption/genetics , Osteoclasts/metabolism , Phosphoproteins/genetics , Serine/metabolism , Tumor Necrosis Factor-alpha/genetics , Actin Cytoskeleton/ultrastructure , Actins/genetics , Actins/metabolism , Animals , Bone Resorption/metabolism , Bone Resorption/pathology , Cytoskeletal Proteins , Femur/cytology , Femur/metabolism , Gene Expression Regulation , Gene Products, tat/genetics , Gene Products, tat/metabolism , Mice , Mice, Inbred C57BL , Microfilament Proteins , Osteoclasts/cytology , Peptides/genetics , Peptides/metabolism , Phosphoproteins/metabolism , Phosphorylation , Podosomes/metabolism , Podosomes/ultrastructure , Primary Cell Culture , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Transduction, Genetic , Tumor Necrosis Factor-alpha/metabolism
13.
PLoS One ; 13(9): e0204209, 2018.
Article in English | MEDLINE | ID: mdl-30248139

ABSTRACT

Sealing ring formation is a requirement for osteoclast function. We have recently identified the role of an actin-bundling protein L-plastin in the assembly of nascent sealing zones (NSZs) at the early phase of sealing ring formation in osteoclasts. TNF-α signaling regulates this actin assembly by the phosphorylation of L-plastin on serine -5 and -7 residues at the amino-terminal end. These NSZs function as a core for integrin localization and coordinating integrin signaling required for maturation into fully functional sealing rings. Our goal is to elucidate the essential function of L-plastin phosphorylation in actin bundling, a process required for NSZs formation. The present study was undertaken to determine whether targeting serine phosphorylation of cellular L-plastin would be the appropriate approach to attenuate the formation of NSZs. Our approach is to use TAT-fused small molecular weight amino-terminal L-plastin peptides (10 amino acids) containing phospho- Ser-5 and Ser-7. We used peptides unsubstituted (P1) and substituted (P2- P4) at serine-to-alanine residues. Immunoblotting, actin staining, and dentine resorption analyses were done to determine cellular L-plastin phosphorylation, NSZ or sealing ring formation, and osteoclast function, respectively. Immunoblotting for bone formation markers, Alizarin red staining and alkaline phosphatase activity assay have been done to determine the effect of peptides on the mineralization process mediated by osteoblasts. Transduction of unsubstituted (P1) and substituted peptides at either Serine 5 or Serine 7 with Alanine (P3 and P4) demonstrated variable inhibitory effects on the phosphorylation of cellular L-plastin protein. Peptide P1 reduces the following processes substantially: 1) cellular L-plastin phosphorylation; 2) formation of nascent sealing zones and sealing rings; 3) bone resorption. Substitution of both Serine-5 and -7 with Alanine (P2) had no effects on the inhibitory activities described above. Furthermore, either the L-plastin (P1-P5) or (P6) control peptides had a little or no impact on the a) assembly/disassembly of podosomes and migration of osteoclasts; b) mineralization process mediated by osteoblasts in vitro. Small molecular weight peptidomimetics of L-plastin inhibits bone resorption by osteoclasts via attenuation of NSZ and sealing ring formation but not bone formation by osteoblasts in vitro. The L-plastin may be a valuable therapeutic target to treat and prevent diseases associated with bone loss without affecting bone formation.


Subject(s)
Osteoblasts/cytology , Osteoclasts/cytology , Osteogenesis , Peptidomimetics/pharmacology , Phosphoproteins/antagonists & inhibitors , Animals , Cell Differentiation , Cell Line , Cytoskeletal Proteins , Mice , Microfilament Proteins , Osteoblasts/drug effects , Osteoclasts/drug effects , Phosphoproteins/metabolism , Phosphorylation , RAW 264.7 Cells , Recombinant Fusion Proteins/pharmacology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism
14.
Front Cell Dev Biol ; 5: 18, 2017.
Article in English | MEDLINE | ID: mdl-28326306

ABSTRACT

CD44 is a cell surface adhesion receptor that is highly expressed in many cancers and regulates metastasis via recruitment of CD44 to the cell surface. Its interaction with appropriate extracellular matrix ligands promotes the migration and invasion processes involved in metastases. It was originally identified as a receptor for hyaluronan or hyaluronic acid and later to several other ligands including, osteopontin (OPN), collagens, and matrix metalloproteinases. CD44 has also been identified as a marker for stem cells of several types. Beside standard CD44 (sCD44), variant (vCD44) isoforms of CD44 have been shown to be created by alternate splicing of the mRNA in several cancer. Addition of new exons into the extracellular domain near the transmembrane of sCD44 increases the tendency for expressing larger size vCD44 isoforms. Expression of certain vCD44 isoforms was linked with progression and metastasis of cancer cells as well as patient prognosis. The expression of CD44 isoforms can be correlated with tumor subtypes and be a marker of cancer stem cells. CD44 cleavage, shedding, and elevated levels of soluble CD44 in the serum of patients is a marker of tumor burden and metastasis in several cancers including colon and gastric cancer. Recent observations have shown that CD44 intracellular domain (CD44-ICD) is related to the metastatic potential of breast cancer cells. However, the underlying mechanisms need further elucidation.

15.
Article in English | MEDLINE | ID: mdl-26635961

ABSTRACT

BACKGROUND: That citrate is a major indispensible component of bone in humans and in all osteovertebrates has been known for about seventy-five years. Yet, its role and importance in the structure and function of bone and bone formation have remained unknown. However, recent studies have identified that citrate is a major and essential component of the apatite/collagen structure of bone; and that the biomechanical properties of bone (e.g., stability, strength, resistance to fracture) depend on the appropriate incorporation of citrate in the structure of bone. The osteoblasts have recently been identified as citrate-producing cells that provide the citrate that is incorporated in the apatite/collagen structure during osteogenesis. Little is known regarding the factors and mechanisms involved in the regulation of citrate that is incorporated along with mineralization during the process of bone formation. Because of the importance of BMP2 in the initiation of osteogenesis and the development of the osteoblasts, it is essential to determine its possible implication in the development of the citrate-producing capability of the osteoblasts (i.e., "citration") during the formation of mineralized bone nodules. METHODS: The goal of this study was to determine if BMP2 promotes the development of citrate-producing osteoblasts for increased citrate incorporation in the formation of mineralized bone nodules. The study employed MC3T3 mesenchyme stem cell osteogenic differentiation in the presence and absence of BMP2. RESULTS: The results showed that BMP2 treatment increased the osteogenic development of mineralized bone nodules. In addition, BMP2 increased osteoblast citrate production and incorporation in the mineralized bone nodule. This was accompanied by increased ZIP1 transporter, which is an essential genetic/metabolic event for citrate-producing cells. CONCLUSIONS: The results demonstrate, for the first time, that BMP2 facilitates the osteoblast "citration" process in concert with mineralization during bone formation; and provide confirmation of the important role of osteoblasts as specialized citrate-producing cells in the process of bone formation. However, it is essential to determine if these in vitro effects will occur in vivo in BMP2-implant induction of bone formation. "Citration" is essential for osteoinductive bone to represent the chemical, structural, and biomechanical properties of "normal" bone.

16.
Cancers (Basel) ; 5(2): 617-38, 2013 May 27.
Article in English | MEDLINE | ID: mdl-24216994

ABSTRACT

Osteopontin and MMP9 are implicated in angiogenesis and cancer progression. The objective of this study is to gain insight into the molecular mechanisms underlying angiogenesis, and to elucidate the role of osteopontin in this process. We report here that osteopontin/αvß3 signaling pathway which involves ERK1/2 phosphorylation regulates the expression of VEGF. An inhibitor to MEK or curcumin significantly suppressed the phosphorylation of ERK1/2 and expression of VEGF. MMP9 knockdown reduces the secretion but not the expression of VEGF. Moreover, MMP9 knockdown increases the release of angiostatin, a key protein that suppresses angiogenesis. Conditioned media from PC3 cells treated with curcumin or MEK inhibitor inhibited tube formation in vitro in human microvascular endothelial cells. Similar inhibitory effect on tube formation was found with conditioned media collected from PC3 cells expressing mutant-osteopontin at integrin-binding site and knockdown of osteopontin or MMP9. We conclude that MMP9 activation is associated with angiogenesis via regulation of secretion of VEGF and angiostatin in PC3 cells. Curcumin is thus a potential drug for cancer treatment because it demonstrated anti-angiogenic and anti-invasive properties.

17.
Biomed Res Int ; 2013: 302392, 2013.
Article in English | MEDLINE | ID: mdl-23984338

ABSTRACT

CD44, MT1-MMP, and MMP9 are implicated in the migration of osteoclast and bone resorption. This study was designed to determine the functional relationship between CD44 and MT1-MMP in the activation of pro-MMP9. We used osteoclasts isolated from wild-type and CD44-null mice. Results showed that MT1-MMP is present in multiple forms with a molecular mass ~63, 55, and 45 kDa in the membrane of wild-type osteoclasts. CD44-null osteoclasts demonstrated a 55 kDa active MT1-MMP form in the membrane and conditioned medium. It failed to activate pro-MMP9 because TIMP2 binds and inhibits this MT1-MMP (~55 kDa) in CD44-null osteoclasts. The role of MT1-MMP in the activation of pro-MMP9, CD44 expression, and migration was confirmed by knockdown of MT1-MMP in wild-type osteoclasts. Although knockdown of MMP9 suppressed osteoclast migration, it had no effects on MT1-MMP activity or CD44 expression. These results suggest that CD44 and MT1-MMP are directly or indirectly involved in the regulation of pro-MMP9 activation. Surface expression of CD44, membrane localization of MT1-MMP, and activation of pro-MMP9 are the necessary sequence of events in osteoclast migration.


Subject(s)
Cell Membrane/enzymology , Extracellular Matrix/enzymology , Hyaluronan Receptors/metabolism , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 9/metabolism , Osteoclasts/cytology , Osteoclasts/enzymology , Animals , Bone Resorption/enzymology , Bone Resorption/pathology , Cell Migration Assays , Cell Movement , Cell Polarity , Enzyme Activation , Gene Knockdown Techniques , Immunoblotting , Mice , Mice, Inbred C57BL , Molecular Weight , Protein Binding , Protein Transport , RNA, Small Interfering/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism
18.
ScientificWorldJournal ; 2013: 493689, 2013.
Article in English | MEDLINE | ID: mdl-23476138

ABSTRACT

Cell surface interaction of CD44 and MMP9 increases migration and invasion of PC3 cells. We show here that stable knockdown of MMP9 in PC3 cells switches CD44 isoform expression from CD44s to CD44v6 which is more glycosylated. These cells showed highly adhesive morphology with extensive cell spreading which is due to the formation of focal adhesions and well organized actin-stress fibers. MMP9 knockdown blocks invadopodia formation and matrix degradation activity as well. However, CD44 knockdown PC3 cells failed to develop focal adhesions and stress fibers; hence these cells make unstable adhesions. A part of the reason for these changes could be caused by silencing of CD44v6 as well. Immunostaining of prostate tissue microarray sections illustrated significantly lower levels of CD44v6 in adenocarcinoma than normal tissue. Our results suggest that interaction between CD44 and MMP9 is a potential mechanism of invadopodia formation. CD44v6 expression may be essential for the protection of non-invasive cellular phenotype. CD44v6 decrease may be a potential marker for prognosis and therapeutics.


Subject(s)
Gene Expression Regulation, Neoplastic , Hyaluronan Receptors/metabolism , Matrix Metalloproteinase 9/metabolism , Phenotype , Prostatic Neoplasms/enzymology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Adhesion , Cell Line, Tumor , Cell Movement , Focal Adhesions/genetics , Focal Adhesions/metabolism , Gene Knockdown Techniques , Humans , Hyaluronan Receptors/genetics , Male , Matrix Metalloproteinase 9/genetics , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Stress Fibers/genetics , Stress Fibers/metabolism
19.
Mol Cancer ; 11: 66, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22966907

ABSTRACT

BACKGROUND: Bone loss and pathological fractures are common skeletal complications associated with androgen deprivation therapy and bone metastases in prostate cancer patients. We have previously demonstrated that prostate cancer cells secrete receptor activator of NF-kB ligand (RANKL), a protein essential for osteoclast differentiation and activation. However, the mechanism(s) by which RANKL is produced remains to be determined. The objective of this study is to gain insight into the molecular mechanisms controlling RANKL expression in metastatic prostate cancer cells. RESULTS: We show here that phosphorylation of Smad 5 by integrin αvß3 and RUNX2 by CD44 signaling, respectively, regulates RANKL expression in human-derived PC3 prostate cancer cells isolated from bone metastasis. We found that RUNX2 intranuclear targeting is mediated by phosphorylation of Smad 5. Indeed, Smad5 knock-down via RNA interference and inhibition of Smad 5 phosphorylation by an αv inhibitor reduced RUNX2 nuclear localization and RANKL expression. Similarly, knockdown of CD44 or RUNX2 attenuated the expression of RANKL. As a result, conditioned media from these cells failed to support osteoclast differentiation in vitro. Immunohistochemistry analysis of tissue microarray sections containing primary prostatic tumor (grade2-4) detected predominant localization of RUNX2 and phosphorylated Smad 5 in the nuclei. Immunoblotting analyses of nuclear lysates from prostate tumor tissue corroborate these observations. CONCLUSIONS: Collectively, we show that CD44 signaling regulates phosphorylation of RUNX2. Localization of RUNX2 in the nucleus requires phosphorylation of Smad-5 by integrin αvß3 signaling. Our results suggest possible integration of two different pathways in the expression of RANKL. These observations imply a novel mechanistic insight into the role of these proteins in bone loss associated with bone metastases in patients with prostate cancer.


Subject(s)
Bone Resorption/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Hyaluronan Receptors/metabolism , Integrin alphaVbeta3/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/secondary , Receptor Activator of Nuclear Factor-kappa B/metabolism , Smad5 Protein/metabolism , Binding Sites , Bone Resorption/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cell Nucleus/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Hyaluronan Receptors/genetics , Male , Neoplasm Metastasis , Osteoclasts/cytology , Osteoclasts/metabolism , Phosphorylation , Promoter Regions, Genetic , Prostatic Neoplasms/genetics , Protein Binding , Protein Transport , RANK Ligand/genetics , RANK Ligand/metabolism , Signal Transduction
20.
Mol Cancer ; 9: 260, 2010 Sep 26.
Article in English | MEDLINE | ID: mdl-20868520

ABSTRACT

BACKGROUND: Osteopontin (OPN) has been shown to play many roles in the progression of cancer. We have recently demonstrated the activation of Akt by OPN. Integrin-linked kinase and PI3-kinase are integral proteins in OPN/AKT pathway in PC3 cells. To investigate the role of the extracellular receptors in OPN signaling, we have examined the spatio-temporal regulation of CD44 and integrin αvß3 receptor in OPN-induced Akt activation in PC3 cells. RESULTS: Here, our studies demonstrate that OPN can activate Akt either through the αVß3 integrin or the CD44 cell surface receptor. Members of the Mitogen Activated Protein Kinase (MAPK) family have been shown to be up-regulated in a variety of human cancers and have been implicated in the metastatic behavior. Our studies have demonstrated an increase in the phosphorylation of c-Raf at Ser259 and Ser338 in PC3 cells over-expressing OPN. This increase matches up with the Erk1/2 phosphorylation at Thr202/204 and activation. However, the inhibition of Akt activity augments the phosphorylation state of ERK1/2 to two to three fold with a concomitant reduction in the phosphorylation state of c-Raf at Ser259. CONCLUSIONS: Regulation c-Raf phosphorylation at Ser259 has a role in the anti-apoptotic pathways mediated by Akt or Raf/MEK/ERK proteins. OPN may have dual effects in the activation of Erk1/2. We propose this based on the observations that while OPN activates c-Raf and Erk1/2; it also acts to inhibit c-Raf and Erk1/2 activation through Akt pathway. Our observations suggest that the activation of c-Raf-ERK cascade may promote cell cycle arrest in prostate cancer cells and OPN signaling has a role in the anti-apoptotic mechanism.


Subject(s)
Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Osteopontin/metabolism , Prostatic Neoplasms/enzymology , Cell Line, Tumor , Electrophoresis, Polyacrylamide Gel , Humans , Immunoblotting , Male , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Models, Biological , Osteopontin/genetics , Phosphorylation , Prostatic Neoplasms/genetics , Signal Transduction/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...