Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 607
Filter
1.
Transl Oncol ; 49: 102068, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121828

ABSTRACT

OBJECTIVE: Nucleotide metabolic reprogramming as a hallmark of cancer is closely related to the occurrence and progression of cancer. We aimed to comprehensively analyze the nucleotide metabolism-related gene set and clinical significance in gliomas. METHODS: The RNA sequencing data of 702 gliomas from the Cancer Genome Atlas (TCGA) dataset were included as the training set, and the RNA sequencing data from the other three datasets (CGGA, GSE16011, and Rembrandt) were used as independent validation sets. Survival curve, Cox regression analysis, time-dependent ROC curve and nomogram model were performed to evaluate prognostic power of signature. R language was the main tool for bioinformatic analysis and graphical work. RESULTS: Based on the expression profiles of nucleotide metabolism-related genes, consensus clustering identified two robust clusters with different prognosis. We then developed a nucleotide metabolism-related signature that was closely related to clinical, pathological, and genomic characteristics of gliomas. And ROC curve showed that our signature was a potential biomarker for mesenchymal subtype. Survival curve and Cox regression analysis revealed signature as an independent prognostic factor for gliomas. In addition, we constructed a nomogram model to predict individual survival. Finally, functional analysis showed that nucleotide metabolism not only affected cell division and cell cycle, but also was associated with immune response in gliomas. CONCLUSION: We developed a nucleotide metabolism-related signature to predict prognosis and provided new insights into the role of nucleotide metabolism in gliomas.

3.
J Mol Cell Cardiol ; 195: 24-35, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39002608

ABSTRACT

Pulmonary hypertension (PH) is characterized by excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), in which inflammatory signaling caused by activation of the NF-κB pathway plays an important role. A20 is an important negative regulator of the NF-κB pathway, and zinc promotes the expression of A20 and exerts a protective effect against various diseases (e.g. COVID19) by inhibiting the inflammatory signaling. The role of A20 and intracellular zinc signaling in PH has been explored, but the extracellular zinc signaling is not well understood, and whether zinc has protective effects on PH is still elusive. Using inductively coupled plasma mass spectrometry (ICP-MS), we studied the alteration of trace elements during the progression of monocrotaline (MCT)-induced PH and found that serum zinc concentration was decreased with the onset of PH accompanied by abnormalities of other three elements, including copper, chromium, and magnesium. Zinc chloride injection with the dosage of 5 mg/kg intraperitoneally partially corrected this abnormality and inhibited the progression of PH. Zinc supplementation induced the expression of A20 in lung tissue and reduce the inflammatory responses. In vitro, zinc supplementation time-dependently upregulated the expression of A20 in PASMCs, therefore correcting the excessive proliferation and migration of cells caused by hypoxia. Using genetically encoded-FRET based zinc probe, we found that these effects of zinc ions are not achieved by entering cells, but most likely by activating cell surface zinc receptor (ZnR/GPR39). These results provide the first evidence of the effectiveness of zinc supplementation in the treatment of PH.

4.
Eur J Radiol Open ; 12: 100534, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39022614

ABSTRACT

Purpose: This study aimed to investigate differences in cervical lymph node image quality on dual-energy computed tomography (CT) scan with datasets reconstructed using filter back projection (FBP), hybrid iterative reconstruction (IR), and deep learning-based image reconstruction (DLIR) in patients with head and neck cancer. Method: Seventy patients with head and neck cancer underwent follow-up contrast-enhanced dual-energy CT examinations. All datasets were reconstructed using FBP, hybrid IR with 30 % adaptive statistical IR (ASiR-V), and DLIR with three selectable levels (low, medium, and high) at 2.5- and 0.625-mm slice thicknesses. Herein, signal, image noise, signal-to-noise ratio, and contrast-to-noise ratio of lymph nodes and overall image quality, artifact, and noise of selected regions of interest were evaluated by two radiologists. Next, cervical lymph node sharpness was evaluated using full width at half maximum. Results: DLIR exhibited significantly reduced noise, ranging from 3.8 % to 35.9 % with improved signal-to-noise ratio (11.5-105.6 %) and contrast-to-noise ratio (10.5-107.5 %) compared with FBP and ASiR-V, for cervical lymph nodes (p < 0.001). Further, 0.625-mm-thick images reconstructed using DLIR-medium and DLIR-high had a lower noise than 2.5-mm-thick images reconstructed using FBP and ASiR-V. The lymph node margins and vessels on DLIR-medium and DLIR-high were sharper than those on FBP and ASiR-V (p < 0.05). Both readers agreed that DLIR had a better image quality than the conventional reconstruction algorithms. Conclusion: DLIR-medium and -high provided superior cervical lymph node image quality in head and neck CT. Improved image quality affords thin-slice DLIR images for dose-reduction protocols in the future.

5.
Eur J Neurosci ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044301

ABSTRACT

Chemerin is an adipokine that contributes to metabolism regulation. Nucleus tractus solitarius (NTS) is the first relay station in the brain for accepting various visceral afferent activities for regulating cardiovascular activity. However, the roles of chemerin in the NTS in regulating sympathetic activity and blood pressure are almost unknown. This study aimed to determine the role and potential mechanism of chemerin in the NTS in modulating sympathetic outflow and blood pressure. Bilateral NTS microinjections were performed in anaesthetized adult male Sprague-Dawley rats. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were continuously recorded. Chemerin and its receptor chemokine-like receptor 1 (CMKLR1) were highly expressed in caudal NTS (cNTS). Microinjection of chemerin-9 to the cNTS increased RSNA, MAP and HR, which were prevented by CMKLR1 antagonist α-NETA, superoxide scavenger tempol or N-acetyl cysteine, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors diphenyleneiodonium or apocynin. Chemerin-9 increased superoxide production and NADPH oxidase activity in the cNTS. The increased superoxide production induced by chemerin-9 was inhibited by α-NETA. The effects of cNTS microinjection of chemerin-9 on the RSNA, MAP and HR were attenuated by the pretreatment with paraventricular nucleus (PVN) microinjection of NMDA receptor antagonist MK-801 rather than AMPA/kainate receptor antagonist CNQX. These results indicate that chemerin-9 in the NTS increases sympathetic outflow, blood pressure and HR via CMKLR1-mediated NADPH oxidase activation and subsequent superoxide production in anaesthetized normotensive rats. Glutamatergic inputs in the PVN are needed for the chemerin-9-induced responses.

6.
J Geriatr Cardiol ; 21(6): 651-657, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38973824

ABSTRACT

BACKGROUND: Cardioneuroablation (CNA) has shown encouraging results in patients with vasovagal syncope (VVS). However, data on different subtypes was scarce. METHODS: This observational study retrospectively enrolled 141 patients [mean age: 40 ± 18 years, 51 males (36.2%)] with the diagnosis of VVS. The characteristics among different types of VVS and the outcomes after CNA were analyzed. RESULTS: After a mean follow-up of 4.3 ± 1.5 years, 41 patients (29.1%) experienced syncope/pre-syncope events after CNA. Syncope/pre-syncope recurrence significantly differed in each subtype (P = 0.04). The cardioinhibitory type of VVS had the lowest recurrence rate after the procedure (n = 6, 16.7%), followed by mixed (n = 26, 30.6%) and vasodepressive (n = 9, 45.0%). Additionally, a significant difference was observed in the analyses of the Kaplan-Meier survival curve (P = 0.02). Syncope/pre-syncope burden was significantly reduced after CNA in the vasodepressive type (P < 0.01). Vasodepressive types with recurrent syncope/pre-syncope after CNA have a lower baseline deceleration capacity (DC) level than those without (7.4 ± 1.0 ms vs. 9.0 ± 1.6 ms, P = 0.01). Patients with DC < 8.4 ms had an 8.1 (HR = 8.1, 95% CI: 2.2-30.0, P = 0.02) times risk of syncope/pre-syncope recurrence after CNA compared to patients with DC ≥ 8.4 ms, and this association still existed after adjusting for age and sex (HR = 8.1, 95% CI: 2.2-30.1, P = 0.02). CONCLUSIONS: Different subtypes exhibit different event-free rates. The vasodepressive type exhibited the lowest event-free rate, but those patients with DC ≥ 8.4 ms might benefit from CNA.

7.
J Contam Hydrol ; 265: 104384, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880032

ABSTRACT

With increasing phosphate (P) entering the environment during agricultural application, the subsurface flow of particular P has been recently discussed as a vital P transport pathway. Iron (oxyhydr)oxide colloid-facilitated P transport is critical for iron and P biogeochemical processes in the subsurface. This study investigated the ferrihydrite colloid-facilitated P transport through adsorption and column experiments under different P concentrations and three pH conditions. Increased P loading on ferrihydrite colloids decreased the transport of ferrihydrite colloids (< 8.0%) under acid conditions through pore straining and irreversible attachment. Under neutral and alkaline conditions, ferrihydrite colloids exhibited more negative surfaces and smaller diameters with increasing P, which further enhanced ferrihydrite colloid transport (maximum to 95.6%). Ferrihydrite colloid-facilitated P transport was limited under acid conditions, and it was 10% - 57% enhancement under neutral and alkaline conditions with increasing P adsorption. Under neutral conditions, ferrihydrite colloid-facilitated P transport was strongest (maximum to 68.84%) because of its stronger ferrihydrite colloid transport than under acid conditions and larger P adsorption capacity than under alkaline conditions. Our findings indicate that the facilitated transport of ferrihydrite colloids in the presence of P may be appreciable in iron and phosphate-rich soil and subsurface systems, which is essential for evaluating the fate of iron and iron-facilitated P and potential environmental risks of P transport in the subsurface.


Subject(s)
Ferric Compounds , Phosphates , Ferric Compounds/chemistry , Phosphates/chemistry , Adsorption , Hydrogen-Ion Concentration , Colloids/chemistry , Water Movements , Water Pollutants, Chemical/chemistry
8.
Environ Res ; 258: 119460, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38906451

ABSTRACT

To investigate the inhibitory effects of various transition metal ions on nitrogen removal and their underlying mechanisms, the single and combined effects of Cu2+ Ni2+ and Zn2+ on Heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria Acinetobacter sp. TAC-1 were studied in a batch experiment system. The results revealed that increasing concentrations of Cu2+ and Ni2+ had a detrimental effect on the removal of ammonium nitrogen (NH4+-N) and total nitrogen (TN). Specifically, Cu2+ concentration of 10 mg/L, the TN degradation rate was 55.09%, compared to 77.60% in the control group. Cu2+ exhibited a pronounced inhibitory effect. In contrast, Zn2+ showed no apparent inhibitory effect on NH4+-N removal and even enhanced TN removal at lower concentrations. However, when the mixed ion concentration of Zn2++Ni2+ exceeded 5 mg/L, the removal rates of NH4+-N and TN were significantly reduced. Moreover, transition metal ions did not significantly impact the removal rates of chemical oxygen demand (COD). The inhibition model fitting results indicated that the inhibition sequence was Cu2+ > Zn2+ > Ni2+. Transcriptome analysis demonstrated that metal ions influence TAC-1 activity by modulating the expression of pivotal genes, including zinc ABC transporter substrate binding protein (znuA), ribosomal protein (rpsM), and chromosome replication initiation protein (dnaA) and DNA replication of TAC-1 under metal ion stress, leading to disruptions in transcription, translation, and cell membrane structure. Finally, a conceptual model was proposed by us to summarize the inhibition mechanism and possible response strategies of TAC-1 bacteria under metal ion stress, and to address the lack of understanding regarding the influence mechanism of TAC-1 on nitrogen removal in wastewater co-polluted by metal and ammonia nitrogen. The results provided practical guidance for the management of transition metal and ammonia nitrogen co-polluted water bodies, as well as the removal of high nitrogen.


Subject(s)
Denitrification , Nitrification , Acinetobacter/metabolism , Acinetobacter/genetics , Heterotrophic Processes , Aerobiosis , Transition Elements/metabolism , Nitrogen/metabolism , Water Pollutants, Chemical/metabolism
9.
Heliyon ; 10(11): e31659, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841464

ABSTRACT

Objective: and design Mild vascular inflammation promotes the pathogenesis of hypertension. Asprosin, a newly discovered adipokine, is closely associated with metabolic diseases. We hypothesized that asprosin might led to vascular inflammation in hypertension via NLRP3 inflammasome formation. This study shows the importance of asprosin in the vascular inflammation of hypertension. Methods: Primary vascular smooth muscle cells (VSMCs) were obtained from the aorta of animals, including spontaneously hypertensive rats (SHR), Wistar-Kyoto rats (WKY), NLRP3-/- and wild-type mice. Studies were performed in VSMCs in vitro, as well as WKY and SHR in vivo. Results: Asprosin expressions were up-regulated in VSMCs and media of arteries in SHR. Asprosin overexpression promoted NLRP3 inflammasome activation via Toll-like receptor 4 (TLR4), accompanied with activation of NFκB signaling pathway in VSMCs. Exogenous asprosin protein showed similar roles in promoting NLRP3 inflammasome activation. Knockdown of asprosin restrained NLRP3 inflammasome and p65-NFκB activation in VSMCs of SHR. NLRP3 inhibitor MCC950 or NFκB inhibitor BAY11-7082 attenuated asprosin-caused VSMC proliferation and migration. Asprosin-induced interleukin-1ß production, proliferation and migration were attenuated in NLRP3-/- VSMCs. Local asprosin knockdown in common carotid artery of SHR attenuated inflammation and vascular remodeling. Conclusions: Asprosin promoted NLRP3 inflammasome activation in VSMCs by TLR4-NFκB pathway, and thereby stimulates VSMCs proliferation, migration, and vascular remodeling of SHR.

10.
Langmuir ; 40(26): 13550-13561, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38902967

ABSTRACT

There has been a growing emphasis on facile preparation of binary heterogeneous composite materials. Leveraging the eco-friendly efficiency of supercritical CO2 technology, we achieved precise control over the influencing factors of mass transfer, enabling the accurate modulation of the resulting product morphology and properties. In the current study, CuxO/ZrOy composite materials were prepared using this technology and calcined to obtain electrode materials for the detection of cysteine (Cys). Essential comprehensive characterization techniques were employed to elucidate the heterojunction. The resulting electrode demonstrated a linear response to Cys within a concentration range of 0.5 nM to 1 µM, featuring a high sensitivity of 1035 µA·cm-2·µM-1 and a low detection limit of 97.3 nM. Thus, establishing a novel avenue for nonenzyme-based electrochemical sensors tailored for biologically active Cys detection through the implementation of a heterogeneous structure.

11.
Article in English | MEDLINE | ID: mdl-38814824

ABSTRACT

Aims: Asprosin, a newly discovered hormone, is linked to insulin resistance. This study shows the roles of asprosin in vascular smooth muscle cell (VSMC) proliferation, migration, oxidative stress, and neointima formation of vascular injury. Methods: Mouse aortic VSMCs were cultured, and platelet-derived growth factor-BB (PDGF-BB) was used to induce oxidative stress, proliferation, and migration in VSMCs. Vascular injury was induced by repeatedly moving a guidewire in the lumen of the carotid artery in mice. Results: Asprosin overexpression promoted VSMC oxidative stress, proliferation, and migration, which were attenuated by toll-like receptor 4 (TLR4) knockdown, antioxidant (N-Acetylcysteine, NAC), NADPH oxidase 1 (NOX1) inhibitor ML171, or NOX2 inhibitor GSK2795039. Asprosin overexpression increased NOX1/2 expressions, whereas asprosin knockdown increased heme oxygenase-1 (HO-1) and NADPH quinone oxidoreductase-1 (NQO-1) expressions. Asprosin inhibited nuclear factor E2-related factor 2 (Nrf2) nuclear translocation. Nrf2 activator sulforaphane increased HO-1 and NQO-1 expressions and prevented asprosin-induced NOX1/2 upregulation, oxidative stress, proliferation, and migration. Exogenous asprosin protein had similar roles to asprosin overexpression. PDGF-BB increased asprosin expressions. PDGF-BB-induced oxidative stress, proliferation, and migration were enhanced by Nrf2 inhibitor ML385 but attenuated by asprosin knockdown. Vascular injury increased asprosin expression. Local asprosin knockdown in the injured carotid artery promoted HO-1 and NQO-1 expressions but attenuated the NOX1 and NOX2 upregulation, oxidative stress, neointima formation, and vascular remodeling in mice. Innovation and Conclusion: Asprosin promotes oxidative stress, proliferation, and migration of VSMCs via TLR4-Nrf2-mediated redox imbalance. Inhibition of asprosin expression attenuates VSMC proliferation and migration, oxidative stress, and neointima formation in the injured artery. Asprosin might be a promising therapeutic target for vascular injury.

12.
Exp Gerontol ; 192: 112462, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782217

ABSTRACT

BACKGROUND: The android-to-gynoid fat ratio (A/G ratio), an emerging indicator of obesity independent of body mass index (BMI), has yet to be conclusively associated with arterial stiffness in type 2 diabetes mellitus (T2DM). This study aimed to construct a nomogram to estimate arterial stiffness risk in diabetics and explore the interaction effect between A/G ratio and traditional obesity indicators on arterial stiffness. METHODS: 1313 diabetics were divided into 2 groups based on arterial stiffness identified by brachial ankle pulse wave velocity (baPWV), and demographic and clinical features were measured. The LASSO and multivariate logistics regression were used to develop the nomogram. Calibration curve, decision curve analysis (DCA) and receiver operating characteristic (ROC) were applied to assess calibration and clinical usefulness. Interaction effect analysis was performed to quantify the interactive relationship of A/G ratio and obesity indicators on arterial stiffness. RESULTS: 6 independent predictors (age, gender, A/G ratio, SBP, LDL-C and HbA1C) were screened to construct a nomogram prediction model. The calibration curve demonstrated satisfactory agreement between predicted and actual probability, and the nomogram exhibited clinical beneficial at the threshold between 8 % and 95 % indicated by DCA. The area under curve (AUC) was 0.918 and 0.833 for training and external set, respectively. Further investigation revealed A/G ratio and BMI acted positively synergistically towards arterial stiffness, and in BMI-based subgroup analysis, elevated A/G ratio was a significant risk factor for arterial stiffness, especially in normal BMI. CONCLUSIONS: A/G ratio showed a substantial association with arterial stiffness, and the nomogram, incorporating age, gender, A/G ratio, SBP, LDL-C, and HbA1c, exhibited high predictive value. A/G ratio measurement in BMI-normal individuals assisted in identifying cardiovascular diseases early.


Subject(s)
Ankle Brachial Index , Diabetes Mellitus, Type 2 , Pulse Wave Analysis , Vascular Stiffness , Humans , Diabetes Mellitus, Type 2/physiopathology , Vascular Stiffness/physiology , Male , Female , Middle Aged , Cross-Sectional Studies , Aged , China/epidemiology , Obesity/physiopathology , Obesity/complications , Body Mass Index , Nomograms , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Risk Factors , ROC Curve , East Asian People
13.
Luminescence ; 39(5): e4763, 2024 May.
Article in English | MEDLINE | ID: mdl-38761029

ABSTRACT

The development of optical optics for low-location road lighting is a challenging problem in providing high luminance and uniformity of illumination and meeting many other specific requirements. This study proposes an optical design method of low-location illumination based on an asymmetric double freeform surface lens. The ray emitted from the light source is refracted and reflected through the different surface types to the corresponding area of the receiving surface. In the design example, the road has dual-side mounted luminaires and a width of 6 m, and a height of 0.8 m. Simulation results indicate that, compared with conventional high-pole streetlights, the luminance uniformity had increased from 0.60 to 0.66, the illuminance uniformity had improved from 0.75 to 0.86, and the glare had been reduced.


Subject(s)
Lighting , Surface Properties , Light , Equipment Design
14.
PLoS One ; 19(5): e0301721, 2024.
Article in English | MEDLINE | ID: mdl-38718030

ABSTRACT

Small molecular heat shock proteins (sHSPs) belong to the HSP family of molecular chaperones. Under high-temperature stress, they can prevent the aggregation of irreversible proteins and maintain the folding of denatured proteins to enhance heat resistance. In this study, the CmHSP17.9-1 and CmHSP17.9-2 genes, which were cloned from chrysanthemum (Chrysanthemum×morifolium 'Jinba') by homologous cloning, had a complete open reading frame of 480 bp each, encoding 159 amino acids. The protein subcellular localization analysis showed that CmHSP17.9-1 and CmHSP17.9-2 were located in the cytoplasm and mostly aggregated in granules, especially around the nucleus. Real-time quantitative PCR (qRT-PCR) analysis showed that the relative expression level of the CmHSP17.9-1 and CmHSP17.9-2 genes was highest in the terminal buds of the chrysanthemum, followed by the leaves. CmHSP17.9-1 and CmHSP17.9-2 overex-pression vectors were constructed and used to transform the chrysanthemum; overexpression of these genes led to the chrysanthemum phenotypes being less affected by high-temperature, and the antioxidant capacity was enhanced. The results showed that chrysanthemum with overex-pression of the CmHSP17.9-1 and CmHSP17.9-2 genes had stronger tolerance than the wild type chrysanthemum after high-temperature treatment or some degree of heat exercise, and overex-pression of the CmHSP17.9-1 gene led to stronger heat resistance than that of the CmHSP17.9-2 gene, providing an important theoretical basis for the subsequent molecular breeding and pro-duction applications of chrysanthemum.


Subject(s)
Chrysanthemum , Gene Expression Regulation, Plant , Heat-Shock Proteins, Small , Plant Proteins , Amino Acid Sequence , Chrysanthemum/genetics , Cloning, Molecular , Heat-Shock Proteins, Small/genetics , Heat-Shock Proteins, Small/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
15.
J Hypertens ; 42(8): 1427-1439, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38690935

ABSTRACT

OBJECTIVE: Proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to vascular remodeling. Asprosin, a newly discovered protein hormone, is involved in metabolic diseases. Little is known about the roles of asprosin in cardiovascular diseases. This study focused on the role and mechanism of asprosin on VSMC proliferation and migration, and vascular remodeling in a rat model of hypertension. METHODS AND RESULTS: VSMCs were obtained from the aortic media of 8-week-old male Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Asprosin was upregulated in the VSMCs of SHR. For in vitro studies, asprosin promoted VSMC proliferation and migration of WKY and SHR, and increased Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity, NOX1/2/4 protein expressions and superoxide production. Knockdown of asprosin inhibited the proliferation, migration, NOX activity, NOX1/2 expressions and superoxide production in the VSMCs of SHR. The roles of asprosin in promoting VSMC proliferation and migration were not affected by hydrogen peroxide scavenger, but attenuated by superoxide scavenger, selective NOX1 or NOX2 inhibitor. Toll-like receptor 4 (TLR4) was upregulated in SHR, TLR4 knockdown inhibited asprosin overexpression-induced proliferation, migration and oxidative stress in VSMCs of WKY and SHR. Asprosin was upregulated in arteries of SHR, and knockdown of asprosin in vivo not only attenuated oxidative stress and vascular remodeling in aorta and mesentery artery, but also caused a subsequent persistent antihypertensive effect in SHR. CONCLUSIONS: Asprosin promotes VSMC proliferation and migration via NOX-mediated superoxide production. Inhibition of endogenous asprosin expression attenuates VSMC proliferation and migration, and vascular remodeling of SHR.


Subject(s)
Cell Movement , Cell Proliferation , Hypertension , Muscle, Smooth, Vascular , Rats, Inbred SHR , Rats, Inbred WKY , Signal Transduction , Superoxides , Vascular Remodeling , Animals , Male , Superoxides/metabolism , Rats , Hypertension/metabolism , Hypertension/physiopathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , NADPH Oxidases/metabolism , Peptide Hormones/metabolism , Fibrillin-1/metabolism , Toll-Like Receptor 4/metabolism
16.
J Neurosci ; 44(21)2024 May 22.
Article in English | MEDLINE | ID: mdl-38565292

ABSTRACT

Glucagon-like peptide-1 (GLP-1) and its analogs are widely used for diabetes treatment. The paraventricular nucleus (PVN) is crucial for regulating cardiovascular activity. This study aims to determine the roles of GLP-1 and its receptors (GLP-1R) in the PVN in regulating sympathetic outflow and blood pressure. Experiments were carried out in male normotensive rats and spontaneously hypertensive rats (SHR). Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. GLP-1 and GLP-1R expressions were present in the PVN. PVN microinjection of GLP-1R agonist recombinant human GLP-1 (rhGLP-1) or EX-4 increased RSNA and MAP, which were prevented by GLP-1R antagonist exendin 9-39 (EX9-39) or GLP-1R antagonist 1, superoxide scavenger tempol, antioxidant N-acetylcysteine, NADPH oxidase (NOX) inhibitor apocynin, adenylyl cyclase (AC) inhibitor SQ22536 or protein kinase A (PKA) inhibitor H89. PVN microinjection of rhGLP-1 increased superoxide production, NADPH oxidase activity, cAMP level, AC, and PKA activity, which were prevented by SQ22536 or H89. GLP-1 and GLP-1R were upregulated in the PVN of SHR. PVN microinjection of GLP-1 agonist increased RSNA and MAP in both WKY and SHR, but GLP-1 antagonists caused greater effects in reducing RSNA and MAP in SHR than in WKY. The increased superoxide production and NADPH oxidase activity in the PVN of SHR were augmented by GLP-1R agonists but attenuated by GLP-1R antagonists. These results indicate that activation of GLP-1R in the PVN increased sympathetic outflow and blood pressure via cAMP-PKA-mediated NADPH oxidase activation and subsequent superoxide production. GLP-1 and GLP-1R upregulation in the PVN partially contributes to sympathetic overactivity and hypertension.


Subject(s)
Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Hypertension , Paraventricular Hypothalamic Nucleus , Rats, Inbred SHR , Sympathetic Nervous System , Animals , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Male , Hypertension/physiopathology , Hypertension/metabolism , Rats , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Blood Pressure/drug effects , Blood Pressure/physiology , Rats, Inbred WKY , Rats, Sprague-Dawley
17.
J Proteome Res ; 23(5): 1713-1724, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38648079

ABSTRACT

Non-small-cell lung cancer (NSCLC), a common malignant tumor, requires deeper pathogenesis investigation. Autophagy is an evolutionarily conserved lysosomal degradation process that is frequently blocked during cancer progression. It is an urgent need to determine the novel autophagy-associated regulators in NSCLC. Here, we found that pirin was upregulated in NSCLC, and its expression was positively correlated with poor prognosis. Overexpression of pirin inhibited autophagy and promoted NSCLC proliferation. We then performed data-independent acquisition-based quantitative proteomics to identify the differentially expressed proteins (DEPs) in pirin-overexpression (OE) or pirin-knockdown (KD) cells. Among the pirin-regulated DEPs, ornithine decarboxylase 1 (ODC1) was downregulated in pirin-KD cells while upregulated along with pirin overexpression. ODC1 depletion reversed the pirin-induced autophagy inhibition and pro-proliferation effect in A549 and H460 cells. Immunohistochemistry showed that ODC1 was highly expressed in NSCLC cancer tissues and positively related with pirin. Notably, NSCLC patients with pirinhigh/ODC1high had a higher risk in terms of overall survival. In summary, we identified pirin and ODC1 as a novel cluster of prognostic biomarkers for NSCLC and highlighted the potential oncogenic role of the pirin/ODC1/autophagy axis in this cancer type. Targeting this pathway represents a possible therapeutic approach to treat NSCLC.


Subject(s)
Autophagy , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Disease Progression , Lung Neoplasms , Ornithine Decarboxylase , Female , Humans , Male , A549 Cells , Autophagy/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Ornithine Decarboxylase/metabolism , Ornithine Decarboxylase/genetics , Prognosis , Up-Regulation
18.
Pharmacol Biochem Behav ; 239: 173757, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574898

ABSTRACT

Depression is a major chronic mental illness worldwide, characterized by anhedonia and pessimism. Exposed to the same stressful stimuli, some people behave normally, while others exhibit negative behaviors and psychology. The exact molecular mechanisms linking stress-induced depressive susceptibility and resilience remain unclear. Connexin 43 (Cx43) forms gap junction channels between the astrocytes, acting as a crucial role in the pathogenesis of depression. Cx43 dysfunction could lead to depressive behaviors, and depression down-regulates the expression of Cx43 in the prefrontal cortex (PFC). Besides, accumulating evidence indicates that inflammation is one of the most common pathological features of the central nervous system dysfunction. However, the roles of Cx43 and peripheral inflammation in stress-susceptible and stress-resilient individuals have rarely been investigated. Thus, animals were classified into the chronic unpredictable stress (CUS)-susceptible group and the CUS-resilient group based on the performance of behavioral tests following the CUS protocol in this study. The protein expression of Cx43 in the PFC, the Cx43 functional changes in the PFC, and the expression levels including interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, IL-2, IL-10, and IL-18 in the peripheral serum were detected. Here, we found that stress exposure triggered a significant reduction in Cx43 protein expression in the CUS-susceptible mice but not in the CUS-resilient mice accompanied by various Cx43 phosphorylation expression and the changes of inflammatory signals. Stress resilience is associated with Cx43 in the PFC and fluctuation in inflammatory signaling, showing that therapeutic targeting of these pathways might promote stress resilience.


Subject(s)
Connexin 43 , Inflammation , Prefrontal Cortex , Stress, Psychological , Animals , Prefrontal Cortex/metabolism , Connexin 43/metabolism , Mice , Stress, Psychological/metabolism , Male , Inflammation/metabolism , Resilience, Psychological , Mice, Inbred C57BL , Depression/metabolism , Cytokines/metabolism , Disease Susceptibility , Behavior, Animal
19.
Sci Adv ; 10(17): eadk3852, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657063

ABSTRACT

Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.


Subject(s)
Animal Migration , Genomics , Wind , Animals , Genomics/methods , Hemiptera/genetics , Genome, Insect , Genetics, Population
20.
Eur J Clin Microbiol Infect Dis ; 43(5): 1031-1036, 2024 May.
Article in English | MEDLINE | ID: mdl-38472521

ABSTRACT

PURPOSE: We aimed to show the increasing incidence of invasive fungal infections due to Volvariella Volvacea in patients with immunosuppression. METHODS: We present a case of an invasive fungal infection caused by Volvariella volvacea, and summarize the clinical and pathological features based on this case and a review of the literature. RESULTS: A total of seven patients with IFIs due to Volvariella Volvacea have been reported in the literature. The majority of cases have been obtained between 2019 and 2022. Including our case, they all had acquired immunosuppression. The lung and brain were the most commonly affected organs. All eight of these patients received antifungal therapy, but five still died one to seven months after occurrences of IFIs. CONCLUSION: The incidence of invasive fungal infections due to Volvariella Volvacea is increasing in recent years. It mainly occurred in patients with immunosuppression, especially in patients with malignant hematological cancers, and increased mortality.


Subject(s)
Antifungal Agents , Invasive Fungal Infections , Volvariella , Humans , Volvariella/genetics , Invasive Fungal Infections/epidemiology , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/microbiology , Invasive Fungal Infections/mortality , Incidence , Male , Antifungal Agents/therapeutic use , Immunocompromised Host , Middle Aged , Female , Aged
SELECTION OF CITATIONS
SEARCH DETAIL