Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Mater Chem B ; 12(19): 4655-4665, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38646701

ABSTRACT

Developing soft wearable sensors with high sensitivity, low cost, and a wide monitoring range is crucial for monitoring human health. Despite advances in strain sensor technology, achieving high sensitivity and a wide operating range in a single device remains a major challenge in its design and preparation. Herein, a liquid metal (LM) is innovatively ultrasonically anchored to the gaps and surfaces of thermoplastic polyurethane (TPU) electrospun fibers, and then a conductive pathway is constructed through polypyrrole (PPy) self-polymerization to prepare a composite film. The strain sensor developed by ultrasonic anchoring and original polymerization technology shows a high strain coefficient (GF = 4.36 at 12.5% strain) and a low detection limit (less than 1% strain). Importantly, this sensor can monitor joint motion and subtle skin deformations in real time. In addition, the integration of strain sensors and N95 masks enables real-time monitoring of human respiration.


Subject(s)
Polymers , Polyurethanes , Pyrroles , Wearable Electronic Devices , Pyrroles/chemistry , Humans , Polymers/chemistry , Polyurethanes/chemistry , Electric Conductivity , Surface Properties , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Particle Size
2.
Angew Chem Int Ed Engl ; 63(22): e202404058, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38528771

ABSTRACT

Ultrathin continuous metal-organic framework (MOF) membranes have the potential to achieve high gas permeance and selectivity simultaneously for otherwise difficult gas separations, but with few exceptions for zeolitic-imidazolate frameworks (ZIF) membranes, current methods cannot conveniently realize practical large-area fabrication. Here, we propose a ligand back diffusion-assisted bipolymer-directed metal ion distribution strategy for preparing large-area ultrathin MOF membranes on flexible polymeric support layers. The bipolymer directs metal ions to form a cross-linked two-dimensional (2D) network with a uniform distribution of metal ions on support layers. Ligand back diffusion controls the feed of ligand molecules available for nuclei formation, resulting in the continuous growth of large-area ultrathin MOF membranes. We report the practical fabrication of three representative defect-free MOF membranes with areas larger than 2,400 cm2 and ultrathin selective layers (50-130 nm), including ZIFs and carboxylate-linker MOFs. Among these, the ZIF-8 membrane displays high gas permeance of 3,979 GPU for C3H6, with good mixed gas selectivity (43.88 for C3H6/C3H8). To illustrate its scale-up practicality, MOF membranes were prepared and incorporated into spiral-wound membrane modules with an active area of 4,800 cm2. The ZIF-8 membrane module presents high gas permeance (3,930 GPU for C3H6) with acceptable ideal gas selectivity (37.45 for C3H6/C3H8).

3.
Angew Chem Int Ed Engl ; 63(21): e202401118, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38433100

ABSTRACT

Inorganic zeolites have excellent molecular sieving properties, but they are difficult to process into macroscopic structures. In this work, we use metal-organic framework (MOF) glass as substrates to engineer the interface with inorganic zeolites, and then assemble the discrete crystalline zeolite powders into monolithic structures. The zeolites are well dispersed and stabilized within the MOF glass matrix, and the monolith has satisfactory mechanical stabilities for membrane applications. We demonstrate the effective separation performance of the membrane for 1,3-butadiene (C4H6) from other C4 hydrocarbons, which is a crucial and challenging separation in the chemical industry. The membrane achieves a high permeance of C4H6 (693.00±21.83 GPU) and a high selectivity over n-butene, n-butane, isobutene, and isobutane (9.72, 9.94, 10.31, and 11.94, respectively). This strategy opens up new possibilities for developing advanced membrane materials for difficult hydrocarbon separations.

4.
Article in English | MEDLINE | ID: mdl-38367406

ABSTRACT

An LC-MS/MS method was developed and validated for the simultaneous determination of the carboxylic acid ester precursor HD56 and the active product HD561 in cynomolgus monkey plasma. Then, the pharmacokinetic characteristics of both compounds following single and multiple i.g. administrations in cynomolgus monkeys were elucidated. In the method, chromatographic separation was achieved with a C18 reversed-phase column and the target quantification was carried out by an electrospray ionization (ESI) source coupled with triple quadrupole mess detector in positive ionization mode with multiple reaction monitoring (MRM) approach. Using the quantification method, the in vitro stability of HD56 in plasma and HD56 pharmacokinetic behavior after i.g. administration in cynomolgus monkey were investigated. It was approved that HD56 did convert into HD561 post-administration. The overall systemic exposure of HD561 post-conversion from HD56 accounted for only about 17% of HD56. After repeated administration at the same dose, there was no significant difference in exposure levels of both HD56 and HD561. However, after multiple dosing, the exposure of HD56 tended to decrease while that of HD561 tended to increase, resulting in a 30% in the exposure ratio. Remarkably, with a carboxylesterase (CES) activity profile akin to humans, the observed in vivo pharmacokinetic profile in cynomolgus monkeys holds promise for predicting HD56/HD561 PK profiles in humans.


Subject(s)
Prodrugs , Tandem Mass Spectrometry , Animals , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Macaca fascicularis , Liquid Chromatography-Mass Spectrometry , Reproducibility of Results
5.
Chem Sci ; 14(30): 8214-8221, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37538823

ABSTRACT

Renewable-energy-driven CO2 electroreduction provides a promising way to address the growing greenhouse effect issue and produce value-added chemicals. As one of the bulk chemicals, formic acid/formate has the highest revenue per mole of electrons among various products. However, the scaling up of CO2-to-formate for practical applications with high faradaic efficiency (FE) and current density is constrained by the difficulty of precisely reconciling the competing intermediates (*COOH and HCOO*). Herein, a Zn-induced electron-rich Sn electrocatalyst was reported for CO2-to-formate with high efficiency. The faradaic efficiency of formate (FEformate) could reach 96.6%, and FEformate > 90% was maintained at formate partial current density up to 625.4 mA cm-1. Detailed study indicated that catalyst reconstruction occurred during electrolysis. With appropriate electron accumulation, the electron-rich Sn catalyst could facilitate the adsorption and activation of CO2 molecules to form a intermediate and then promoted the carbon protonation of to yield a HCOO* intermediate. Afterwards, the HCOO* → HCOOH* proceeded via another proton-coupled electron transfer process, leading to high activity and selectivity for formate production.

6.
Chem Asian J ; 18(16): e202300486, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37449531

ABSTRACT

Creating more pleated and collapsed structures for carbon-based electrode materials is an important measure to enhance the performance of supercapacitors. Herein, a polymer formed by the aldimine reaction of terephthalaldehyde and aminopropyltriethoxysilane was utilized as the carbon source, and tetraethoxysilane was added as a silica additive to achieve the wrinkled structure on hollow carbon spheres. The silica had a significant modulating effect on the structure of the obtained wrinkled hollow carbon sphere (WHCS), which displayed a visible pleated structure, hollow structure, high specific surface area, and pore volume. As an electrode material for supercapacitors, WHCS exhibits excellent performance with a capacitance of 312 F ⋅ g-1 and remarkable cycle life stability, demonstrating its great potential for use in supercapacitors.

7.
ACS Nano ; 17(11): 10055-10064, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37159435

ABSTRACT

Reducing CO2 into value-added chemicals and fuels by electrochemical reduction of CO2 (CO2ER) in an aqueous medium is considered a potential way to store intermittent renewable energy and alleviate the energy crisis. Cu-based catalysts are a common electrocatalyst used in CO2ER. However, selectivity has always been a difficult problem to solve, especially in terms of the production of C1 products. Based on the characteristics of the carbon framework and the CoP2O6 species, herein, Cu and CoP2O6 co-anchored N-doped hollow carbon spheres (CoP2O6/HCS-Cu) with a precisely controllable copper content were prepared, in order to produce formate with a high current density and Faraday efficiency from CO2ER. The ratio of copper to cobalt has a strong influence on the catalytic performance of the catalyst. In addition, the experimental results and density functional theory calculations show that CoP2O6 is an important factor in promoting the formation of formate.

8.
J Colloid Interface Sci ; 630(Pt A): 61-69, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36215824

ABSTRACT

Carbonaceous materials with diverse morphologies have shown unique and excellent performance in many fields, such as catalysis, adsorption, separation and energy storage. However, regulating the structural changes of these morphologies accurately using simple approaches is a difficult process. In this study, porous carbon materials with a morphology that changed from carbon spindles to fold-carbon spheres and then to regular carbon spheres were prepared assisted by in-situ activator of KNO3 in co-assembly of resorcinol/phenol resin and 1-alkyl-3-methylimidazolium bromide. The activation of KNO3 greatly improves the hydrophily, pore volume and surface area of the inert carbon skeleton, and increases heteroatom defects for the carbon framework. As electrode materials of supercapacitors, the influence of different structures on energy storage performance was studied. The obtained fold-carbon spheres showed a higher capacitance (405 F g-1) than flake, spindle and spherical porous carbon, which is due to convenient electrolyte transmission and completely available active sites.


Subject(s)
Carbon , Electrolytes , Carbon/chemistry , Electric Capacitance , Electrodes , Porosity
9.
Small ; 19(8): e2205315, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36470676

ABSTRACT

In recent years, the rapid development of modern society is calling for advanced energy storage to meet the growing demands of energy supply and generation. As one of the most promising energy storage systems, secondary batteries are attracting much attention. The electrolyte is an important part of the secondary battery, and its composition is closely related to the electrochemical performance of the secondary batteries. Lithium-ion battery electrolyte is mainly composed of solvents, additives, and lithium salts, which are prepared according to specific proportions under certain conditions and according to the needs of characteristics. This review analyzes the advantages and current problems of the liquid electrolytes in lithium-ion batteries (LIBs) from the mechanism of action and failure mechanism, summarizes the research progress of solvents, lithium salts, and additives, analyzes the future trends and requirements of lithium-ion battery electrolytes, and points out the emerging opportunities in advanced lithium-ion battery electrolytes development.

10.
Small ; 18(30): e2202989, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35790070

ABSTRACT

High-capacity Ni-rich layered oxides are considered as promising cathodes for lithium-ion batteries. However, the practical applications of LiNi0.83 Co0.07 Mn0.1 O2  (NCM83) cathode are challenged by continuous transition metal (TM) dissolution, microcracks and mixed arrangement of nickel and lithium sites, which are usually induced by deleterious cathode-electrolyte reactions. Herein, it is reported that those side reactions are limited by a reliable cathode electrolyte interface (CEI) layer formed by implanting a nonsacrificial nitrile additive. In this modified electrolyte, 1,3,6-Hexanetricarbonitrile (HTCN) plays a nonsacrificial role in modifying the composition, thickness, and formation mechanism of the CEI layers toward improved cycling stability. It is revealed that HTCN and 1,2-Bis(2-cyanoethoxy)ethane (DENE) are inclined to coordinate with the TM. HTCN can stably anchor on the NCM83 surface as a reliable CEI framework, in contrast, the prior decomposition of DENE additives will damage the CEI layer. As a result, the NCM83/graphite full cells with the LiPF6-EC/DEC-HTCN (BE-HTCN) electrolyte deliver a high capacity retention of 81.42% at 1 C after 300 cycles at a cutoff voltage of 4.5 V, whereas BE and BE-DENE electrolytes only deliver 64.01% and 60.05%. This nonsacrificial nitrile additive manipulation provides valuable guidance for developing aggressive high-capacity Ni-rich cathodes.

11.
Front Pharmacol ; 13: 831181, 2022.
Article in English | MEDLINE | ID: mdl-35264964

ABSTRACT

Excessive activation of N-methyl-d-aspartic acid (NMDA) receptors after cerebral ischemia is a key cause of ischemic injury. For a long time, it was generally accepted that calcium influx is a necessary condition for ischemic injury mediated by NMDA receptors. However, recent studies have shown that NMDA receptor signaling, independent of ion flow, plays an important role in the regulation of ischemic brain injury. The purpose of this review is to better understand the roles of metabotropic NMDA receptor signaling in cerebral ischemia and to discuss the research and development directions of NMDA receptor antagonists against cerebral ischemia. This mini review provides a discussion on how metabotropic transduction is mediated by the NMDA receptor, related signaling molecules, and roles of metabotropic NMDA receptor signaling in cerebral ischemia. In view of the important roles of metabotropic signaling in cerebral ischemia, NMDA receptor antagonists, such as GluN2B-selective antagonists, which can effectively block both pro-death metabotropic and pro-death ionotropic signaling, may have better application prospects.

12.
ACS Appl Mater Interfaces ; 14(9): 11750-11757, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35212539

ABSTRACT

Hollow carbon spheres (HCS) manifest specific merit in achieving large interior void space, high permeability, wide contactable area, and strong stacking ability with negligible aggregation and have attracted attention due to their high supercapacitor activity. As the key factor affecting supercapacitor performance, the surface chemical properties, shell thickness, roughness, and pore volumes of HCS are the focus of research in this field. Herein, the surface chemical properties and structures of HCS are simultaneously adjusted by a feasible and simple process of in situ activation during assembly of resin and potassium chloride (KCl). This strategy involves KCl participating in resin polymerization and the superior performance of potassium species on activating carbon. The surface N/O content, thickness, defects, and roughness degree of HCS can be controlled by adjusting the dosage of KCl. Electrochemical tests show that optimized HCS has suitable roughness, high surface area, and abundant surface N/O functional groups, which endow it with excellent electrochemical capacitance properties, showing its high potential in supercapacitors.

13.
Small ; 18(7): e2105978, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34881503

ABSTRACT

Zinc metal has a severe dendrite issue caused by the uneven Zn plating/stripping during continual cycles, which hinders the practical application of ZIBs. The surficial atomic structure of zinc anode plays a decisive role in solving dendrites and improving the electrochemical performance. According to the density functional theory results, Zn (100) plane possesses a much stronger adsorption energy of zinc atom compared with the (002), thus zinc atom preferentially nucleates on the (100) surface. It subsequently continues to grow vertically on (100). Herein, the zinc anode is designed with hexagonal-hole patterns (h-Zn) through a phosphoric acid etching reaction. An abundance of Zn (100) crystal planes are exposed perpendicularly to the anode surface, while the (002) surfaces are at the bottom of these hexagonal holes. Zinc prefers to deposit in hexagonal holes at the (100) surfaces, favoring the restraining of the surficial dendrite growth and accelerating the Zn deposition kinetics. Thus, the symmetric cell using h-Zn exhibits a long cycling lifespan for over 1200 h and extremely low polarization voltage of ≈80 mV at 5 mA cm-2 and 1 mAh cm-2 . This work provides an insight into the surficial structure design and crystal plane regulation to fabricate brilliant zinc metal anodes.

14.
Nanomicro Lett ; 14(1): 34, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34907459

ABSTRACT

HIGHLIGHTS: Ti3C2Tx MXene-based coaxial zinc-ion hybrid fiber supercapacitors (FSCs) were fabricated with braided structure, which can be prepared continuously and present excellent flexibility and ultrastability. A sports watch driven by the watch belts which weaved uses the obtained zinc-ion hybrid FSC and LED arrays lighted by the FSCs under embedding into textiles, demonstrating the great potential application in smart wearable textiles. Zinc-ion hybrid fiber supercapacitors (FSCs) are promising energy storages for wearable electronics owing to their high energy density, good flexibility, and weavability. However, it is still a critical challenge to optimize the structure of the designed FSC to improve energy density and realize the continuous fabrication of super-long FSCs. Herein, we propose a braided coaxial zinc-ion hybrid FSC with several meters of Ti3C2Tx MXene cathode as core electrodes, and shell zinc fiber anode was braided on the surface of the Ti3C2Tx MXene fibers across the solid electrolytes. According to the simulated results using ANSYS Maxwell software, the braided structures revealed a higher capacitance compared to the spring-like structures. The resulting FSCs exhibited a high areal capacitance of 214 mF cm-2, the energy density of 42.8 µWh cm-2 at 5 mV s-1, and excellent cycling stability with 83.58% capacity retention after 5000 cycles. The coaxial FSC was tied several kinds of knots, proving a shape-controllable fiber energy storage. Furthermore, the knitted FSC showed superior stability and weavability, which can be woven into watch belts or embedded into textiles to power smart watches and LED arrays for a few days.

15.
ACS Appl Mater Interfaces ; 13(50): 60327-60336, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34878767

ABSTRACT

The bulge structure of N-doped carbon cages is beneficial to improving the specific surface area and increasing the active sites of a chemical reaction. Therefore, this structure plays a role in increasing capacity in energy storage. However, the precise and most effective method of ensuring the bulge structures is still a challenge. Herein, a silica-assisted method is used to prepare N-doped carbon cages with bulges. The effective assembly of a nitrogen-rich resin and silica precursor is employed to construct the bulge structure on the surface. The reaction temperature of the assembly system and the amount of silica precursor are the key influences on the number and degree of bulges. In contrast to conventional carbon materials that have a smooth surface, the bulge structure allows for exposure and accessibility of the activity sites. Due to the N-doping features, a rich mesoporous structure and controllable bulges, the synergism of the high density, large ion-accessible surface area, and fast charge transfer, lead to high performance under the premise of high rate capability in supercapacitor. This silica-assisted strategy can also work on other preprepared corresponding templates that have a different architecture to prepare core-shell carbon tubes, carbon spheres, and carbon rods with a bulge structure.

16.
ChemSusChem ; 14(24): 5359-5383, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34704377

ABSTRACT

The development of a low-cost and high-efficiency oxygen evolution reaction (OER) catalyst is essential to meet the future industrial demand for hydrogen production by electrochemical water splitting. Given the limited reserves of noble metals and many competitive applications in environmental protection, new energy, and chemical industries, many studies have focused on exploring new and efficient non-noble metal catalytic systems, improving the understanding of the OER mechanism of non-noble metal surfaces, and designing electrocatalysts with higher activity than traditional noble metals. This Review summarizes the research progress of anode OER catalysts for hydrogen production by electrochemical water splitting in recent years, for noble metal and non-noble metal catalysts, where non-noble metal catalysts are highlighted. The categories are as follows: (1) Transition metal-based compounds, including transition metal-based oxides, transition metal-based layered hydroxides, and transition metal-based sulfides, phosphides, selenides, borides, carbides, and nitrides. Transition metal-based oxides can also be divided into perovskite, spinel, amorphous, rock-salt-type, and lithium oxides according to their different structures. (2) Carbonaceous materials and their composite materials with transition metals. (3) Transition metal-based metal-organic frameworks and their derivatives. Finally, the challenges and future development of the OER process of water splitting are discussed.

17.
ACS Omega ; 6(25): 16623-16630, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34235334

ABSTRACT

Indole is an important raw material in the chemical industry, and more than 1 wt % indole is contained in wash oil. Therefore, the extraction of indole from wash oil is of much importance. The conventional separation methods generally cost much money, pollute the environment, and corrode the metallic devices due to the use of large amounts of inorganic acid and alkali solutions, and therefore, new methods should be proposed. In this work, a solvent extraction process for separating indole from simulated wash oil by five halogen-free ionic liquids (HFILs) has been designed, and the extraction behavior of indole has been evaluated. All the studied HFILs presented excellent extraction behavior for indole, and the whole separation process took no more than 5 min. For the same HFIL, the minimum residual indole contents remained the same, even if the initial indole contents changed. Among the HFILs, 1-butyl-3-methylimidazolium dimethyl phosphate ([Bmim][DMP]) has attracted more attention than other HFILs. The results showed that [Bmim][DMP] could extract over 96.9 wt % indole from the simulated wash oil, and the minimum residual indole content was as low as 2.1 g/dm3. For indole, [Bmim][DMP] presented a maximum distribution coefficient of 201, which was much improved compared to other methods. The HFILs could be regenerated by using diethyl ether with ease. The regenerated HFILs could be reused, and the extraction behavior remained the same as the original HFILs. Based on FT-IR results, a mechanism of hydrogen bonds forming between HFILs and indole was proposed. In addition, the superiorities of HFILs over other separation agents in reusability, amounts needed, distribution coefficient for indole, and chemical structure were proved by comparison.

18.
J Colloid Interface Sci ; 601: 467-473, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34091305

ABSTRACT

Biomass is a common carbon precursor, because of its low cost, easy access and wide sources. However, direct pyrolysis of biomass usually leads to some disadvantages such as morphology destruction, low surface area and poor porosity. Herein, a silica-confined activation strategy is developed to prepare nitrogen-doped (N-doped) porous carbon microcapsule using the renewable biomass carbon precursor of yeasts. The yeasts are wrapped by a dense silica shell, forming a limited space, which can effectively avoid the destruction of yeast morphology during pyrolysis. The pyrolysis gas derived from yeast cannot overflow due to the limitation of confined space, and it plays an in-situ activator to result in layer structure with thin wall, abundant pores and high specific surface area (870 m2 g-1). Moreover, the N-doped porous carbon microcapsule possesses a higher certain of N-doping than the carbon product derived from direct pyrolysis of yeasts. As electrode materials in supercapacitor, the N-doped porous carbon microcapsule exhibits high capacitance of 316 F g-1 at 1 A g-1 with obvious enhancement of electrochemical performance compared with the carbon product derived from direct pyrolysis of yeasts, indicating the promise as a new electrode material in energy storage.


Subject(s)
Carbon , Nitrogen , Capsules , Porosity , Silicon Dioxide
19.
RSC Adv ; 11(33): 20164-20172, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-35479931

ABSTRACT

As precious chemical raw materials, phenols can be applied to produce pharmaceuticals, new materials, engineering products, and so on. The separation of phenols from oil mixtures shows great economic value. In this work, five halogen-free ionic liquids (HFILs) were designed and employed to separate phenols from simulated oils, and all of them showed excellent separation performance. Among the HFILs, 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]) showed the highest separation efficiency of 98.6% for phenol, and achieved a minimum ultimate content of 1.96 g dm-3. The calculated distribution coefficient of phenol reached a high value of 431.8. The separation process could be finished within 3 min, and could be performed at normal temperature. It was also found that the HFILs could separate different types of phenols effectively. During separation, toluene was entrained in the HFIL, and an n-hexane treatment was used. After treatment, the toluene entrained in the HFIL after separation was largely removed, and the purity of the phenol was greatly improved. In addition, the HFILs could be easily regenerated by diethyl ether and reused 6 times without a decrease in separation efficiency. Meanwhile, the separation mechanism was explored by using FT-IR spectroscopy, and the FT-IR results indicated the existence of hydrogen bonds.

20.
J Colloid Interface Sci ; 587: 780-788, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33246656

ABSTRACT

Heteroatom doping in carbonaceous materials is an effective way to improve the performance of supercapacitors. Herein, the N/B-co-doped ordered mesoporous carbon spheres (N/B-OMC) were developed by a facile ionothermal strategy. The ordered mesoporous phenol/formaldehyde resin (PF) spheres were employed as carbon precursor, which was treated by ionothermal process using 1-butyl 3-methyl-imidazole tetrafronoroborate ([Bmim]BF4) as medium. The [Bmim]BF4 can be absorbed in the pores of PF spheres, leading to N/B-co-doping for the obtained carbon framework without damage in spherical morphology and ordered mesoporous structure. As a result, the dual-heteroatom doping, high surface area and enlarged mesopore size of N/B-OMC can enhance the electrochemical performance, exhibiting its promising as novel electrode materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...