Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mil Med Res ; 11(1): 17, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475827

ABSTRACT

BACKGROUND: Tactile and mechanical pain are crucial to our interaction with the environment, yet the underpinning molecular mechanism is still elusive. Endophilin A2 (EndoA2) is an evolutionarily conserved protein that is documented in the endocytosis pathway. However, the role of EndoA2 in the regulation of mechanical sensitivity and its underlying mechanisms are currently unclear. METHODS: Male and female C57BL/6 mice (8-12 weeks) and male cynomolgus monkeys (7-10 years old) were used in our experiments. Nerve injury-, inflammatory-, and chemotherapy-induced pathological pain models were established for this study. Behavioral tests of touch, mechanical pain, heat pain, and cold pain were performed in mice and nonhuman primates. Western blotting, immunostaining, co-immunoprecipitation, proximity ligation and patch-clamp recordings were performed to gain insight into the mechanisms. RESULTS: The results showed that EndoA2 was primarily distributed in neurofilament-200-positive (NF200+) medium-to-large diameter dorsal root ganglion (DRG) neurons of mice and humans. Loss of EndoA2 in mouse NF200+ DRG neurons selectively impaired the tactile and mechanical allodynia. Furthermore, EndoA2 interacted with the mechanically sensitive ion channel Piezo2 and promoted the membrane trafficking of Piezo2 in DRG neurons. Moreover, as an adaptor protein, EndoA2 also bound to kinesin family member 5B (KIF5B), which was involved in the EndoA2-mediated membrane trafficking process of Piezo2. Loss of EndoA2 in mouse DRG neurons damaged Piezo2-mediated rapidly adapting mechanically activated currents, and re-expression of EndoA2 rescued the MA currents. In addition, interference with EndoA2 also suppressed touch sensitivity and mechanical hypersensitivity in nonhuman primates. CONCLUSIONS: Our data reveal that the KIF5B/EndoA2/Piezo2 complex is essential for Piezo2 trafficking and for sustaining transmission of touch and mechanical hypersensitivity signals. EndoA2 regulates touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking in sensory neurons. Our findings identify a potential new target for the treatment of mechanical pain.


Subject(s)
Acyltransferases , Hyperalgesia , Ion Channels , Touch , Animals , Female , Male , Mice , Hyperalgesia/pathology , Ion Channels/metabolism , Kinesins/metabolism , Mechanotransduction, Cellular/physiology , Mice, Inbred C57BL , Pain , Primates , Touch/physiology , Acyltransferases/metabolism
2.
Pain ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38422489

ABSTRACT

ABSTRACT: Acute and chronic itch are prevalent and incapacitating, yet the neural mechanisms underlying both acute and chronic itch are just starting to be unraveled. Activated transcription factor 4 (ATF4) belongs to the ATF/CREB transcription factor family and primarily participates in the regulation of gene transcription. Our previous study has demonstrated that ATF4 is expressed in sensory neurons. Nevertheless, the role of ATF4 in itch sensation remains poorly understood. Here, we demonstrate that ATF4 plays a significant role in regulating itch sensation. The absence of ATF4 in dorsal root ganglion (DRG) neurons enhances the itch sensitivity of mice. Overexpression of ATF4 in sensory neurons significantly alleviates the acute and chronic pruritus in mice. Furthermore, ATF4 interacts with the transient receptor potential cation channel subfamily V member 4 (TRPV4) and inhibits its function without altering the expression or membrane trafficking of TRPV4 in sensory neurons. In addition, interference with ATF4 increases the itch sensitivity in nonhuman primates and enhances TRPV4 currents in nonhuman primates DRG neurons; ATF4 and TRPV4 also co-expresses in human sensory neurons. Our data demonstrate that ATF4 controls pruritus by regulating TRPV4 signaling through a nontranscriptional mechanism and identifies a potential new strategy for the treatment of pathological pruritus.

3.
Adv Mater ; : e2307686, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737521

ABSTRACT

Additive manufacturing (AM), which is based on the principle of layer-by-layer shaping and stacking of discrete materials, has shown significant benefits in the fabrication of complicated implants for tissue engineering (TE). However, many native tissues exhibit anisotropic heterogenous constructs with diverse components and functions. Consequently, the replication of complicated biomimetic constructs using conventional AM processes based on a single material is challenging. Multimaterial 3D and 4D bioprinting (with time as the fourth dimension) has emerged as a promising solution for constructing multifunctional implants with heterogenous constructs that can mimic the host microenvironment better than single-material alternatives. Notably, 4D-printed multimaterial implants with biomimetic heterogenous architectures can provide a time-dependent programmable dynamic microenvironment that can promote cell activity and tissue regeneration in response to external stimuli. This paper first presents the typical design strategies of biomimetic heterogenous constructs in TE applications. Subsequently, the latest processes in the multimaterial 3D and 4D bioprinting of heterogenous tissue constructs are discussed, along with their advantages and challenges. In particular, the potential of multimaterial 4D bioprinting of smart multifunctional tissue constructs is highlighted. Furthermore, this review provides insights into how multimaterial 3D and 4D bioprinting can facilitate the realization of next-generation TE applications.

4.
BMC Med Inform Decis Mak ; 23(1): 173, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37653403

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is a global public health concern. Therefore, to provide timely intervention for non-hospitalized high-risk patients and rationally allocate limited clinical resources is important to mine the key factors when designing a CKD prediction model. METHODS: This study included data from 1,358 patients with CKD pathologically confirmed during the period from December 2017 to September 2020 at Zhongshan Hospital. A CKD prediction interpretation framework based on machine learning was proposed. From among 100 variables, 17 were selected for the model construction through a recursive feature elimination with logistic regression feature screening. Several machine learning classifiers, including extreme gradient boosting, gaussian-based naive bayes, a neural network, ridge regression, and linear model logistic regression (LR), were trained, and an ensemble model was developed to predict 24-hour urine protein. The detailed relationship between the risk of CKD progression and these predictors was determined using a global interpretation. A patient-specific analysis was conducted using a local interpretation. RESULTS: The results showed that LR achieved the best performance, with an area under the curve (AUC) of 0.850 in a single machine learning model. The ensemble model constructed using the voting integration method further improved the AUC to 0.856. The major predictors of moderate-to-severe severity included lower levels of 25-OH-vitamin, albumin, transferrin in males, and higher levels of cystatin C. CONCLUSIONS: Compared with the clinical single kidney function evaluation indicators (eGFR, Scr), the machine learning model proposed in this study improved the prediction accuracy of CKD progression by 17.6% and 24.6%, respectively, and the AUC was improved by 0.250 and 0.236, respectively. Our framework can achieve a good predictive interpretation and provide effective clinical decision support.


Subject(s)
Hospitals , Urinalysis , Male , Humans , Bayes Theorem , Area Under Curve , Machine Learning
5.
Biomater Adv ; 133: 112595, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35527154

ABSTRACT

Customisation of bioactivity and degradability of porous bioceramic scaffolds is a formidable challenge in the field of regenerative medicine. In this study, we developed gyroid-structured ternary composite scaffolds (biphasic calcium phosphate (BCP) and 45S5 bioglass® (BG)) using digital light processing 3D printing technology based on material and structural design. Additionally, the mechanical strength, bioactivity, degradability, and biocompatibility of the composite ceramic scaffolds were evaluated. The results revealed that BG reacted with BCP to generate major active crystalline phases of CaSiO3 and Na3Ca6(PO4)5. These active crystalline phases accelerated the exchange rate of Si4+, Ca2+, and PO43- with HCO3- in simulated body fluids and resulted in the rapid formation of carbonated hydroxyapatite (CHA), analogous to the formation of natural bone tissue. Interestingly, the precipitated CHA showed petal- and needle-like morphologies, which provided a large surface area to promote cell adhesion and proliferation. Furthermore, an increase in the BG content improved the degradability of ternary composite scaffolds after soaking in Tris-HCl solution. The tuneable degradability increased by three times at 30 wt% BG and sharply increased by 6.8 times at 40 wt% BG. This study provides a promising strategy to design scaffolds with improved bioactivity and tuneable degradability to assist a diverse population suffering from orthopedic conditions.


Subject(s)
Printing, Three-Dimensional , Tissue Scaffolds , Bone and Bones , Durapatite/chemistry , Porosity , Tissue Scaffolds/chemistry
6.
Materials (Basel) ; 15(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35591669

ABSTRACT

In this study, in situ TiO2 was grown on the surface of graphene by a facile sol-gel method to form black TiO2/graphene composites with highly improved photocatalytic activity. The combination of graphene and TiO2 was beneficial to eliminate the recombination of photogenerated electron holes. The self-doping Ti3+ was introduced, accompanied by the crystallization of amorphous TiO2, during the hydrogenation process. Consequently, the narrowed bandgap caused by self-doping Ti3+ enhanced the visible light absorption and thus made the composites appear black. Both of them improved the photocatalytic performance of the synthesized black TiO2/graphene composites. The band structure of the composite was analyzed by valence band XPS, revealing the reason for the high visible light catalytic performance of the composite. The results proved that the black TiO2/graphene composites synthesized show attractive potential for applications in environmental and energy issues.

7.
J Org Chem ; 86(12): 7895-7903, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34085515

ABSTRACT

4-Octyl itaconate is a novel antiviral and immunoregulatory small molecule showing great potential in the treatment of various autoimmune diseases and viral infections. It is difficult to selectively esterify the C4 carboxyl group of itaconate acid via one-step direct esterification using chemical catalysts, while the two-step route with itaconic anhydride as an intermediate is environmentally unfriendly and costly. This research investigated the one-step and green synthesis of 4-octyl itaconate through the structure control of lipase, obtaining 4-octyl itaconate with over 98% yield and over 99% selectivity. Multiscale molecular dynamics simulations were applied to investigate the reaction mechanism. The cavity pocket of lipases resulted in a 4-octyl itaconate selectivity by affecting distribution of substrates toward the catalytic site. Toluene could enhance monoesterification in the C4 carboxyl group and contribute to a nearly 100% conversion from itaconate acid into 4-octyl itaconate by adjusting the catalytic microenvironment around the lipase, producing a shrinkage effect on the channel.


Subject(s)
Lipase , Succinates , Esterification
8.
Food Sci Nutr ; 9(5): 2381-2389, 2021 May.
Article in English | MEDLINE | ID: mdl-34026057

ABSTRACT

Intralipids are widely used to provide energy and necessary fatty acids for the patients. The structure of lipids may affect their function. We developed a bio-catalyzed route to prepare various intralipids and investigated the protective effect of intralipids against α-naphthylisothiocyanate (ANIT) induced liver injury rats, further discussing the structure-function relationship. The middle-long-middle (MLM) structural intralipid was synthesized through alcoholysis-esterification, and the influence factors were investigated. ANIT treatment caused liver injury, further making hepatocyte damage, and increasing related biochemical indexes, like aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and total bilirubin (TBIL). Especially, MLM-based and structoglyceride (STG) intralipids worked better in the early stage, to reduce the AST, ALT, and TBIL (p < .05). MLM showed a comparative advantage over other intralipids to accelerate the reduction of ALT (1st day) and AST (3rd day). MLM intralipid might be a promising next-generation intralipid than the current STG intralipid liver-injury patients. The biological catalysis MLM-based intralipids can make the maximum utilization of fatty acids for the liver regeneration, where middle-chain fatty acid (MCFA) in sn-1,3 position can be metabolized directly to provide energy and long-chain fatty acid (LCFA) in sn-2 position can be delivered effectively for cell membrane repairing.

9.
PLoS One ; 14(9): e0222521, 2019.
Article in English | MEDLINE | ID: mdl-31560695

ABSTRACT

Paraquat (PQ), one of the most widely used herbicides worldwide, causes severe toxic effects in humans and animals. 1-methylhydantoin (MH) is an active ingredient of Ranae Oviductus, which has broad pharmacological activities, e.g., eliminating reactive oxygen species and inhibiting inflammation. This study investigated the effects of MH on lung injury induced by PQ. A PQ poisoning model was established by intragastric infusion of PQ (25 mg/kg), and the control group was simultaneously gavaged with the same dose of saline. The MH group was intraperitoneally injected with 100 mg/kg once per day after intragastric infusion of PQ (25 mg/kg) for five consecutive days. All animals were sacrificed on the sixth day, and the lung tissues were dissected for metabolomics analysis. The lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity, TNF-α and malondialdehyde (MDA) content were determined according to the instructions of the detection kit. Compared with that in the control group, the content of LDH, TNF-α and MDA in the lung tissue of the PQ group was significantly higher, and the activity of SOD in the lung tissue was significantly lower (all p<0.05). Compared with that in the control group, the content of LDH, TNF-α and MDA in the MH group was significantly higher, and the activity of SOD was significantly lower (all p<0.05). However, the differences in SOD activity, LDH activity between the PQ and MH groups were not statistically significant (all p > 0.05). There were significant differences in MDA and TNF-α content between the PQ group and MH group (all p<0.05). MH decreased the production of malondialdehyde and TNF-α to protect against the lung injury caused by PQ poisoning, but it had no significant effect on the activity of LDH and SOD. There were significant differences in metabolomics between the MH group and the PQ poisoning group, primarily in bile acid biosynthesis and metabolism of cholesterol, nicotinate, nicotinamide, alanine, aspartate, glutamate, glycine, threonine, serine, phenylalanine and histidine. Therefore, this study highlights that MH has non-invasive mechanisms and may be a promising tool to treat lung injury induced by PQ poisoning.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Hydantoins/therapeutic use , Lung Injury/chemically induced , Paraquat/poisoning , Pulmonary Edema/prevention & control , Acute Lung Injury , Animals , L-Lactate Dehydrogenase/metabolism , Lung/chemistry , Lung/drug effects , Lung Injury/prevention & control , Male , Malondialdehyde/analysis , Metabolomics , Mice , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/analysis
10.
Sci Rep ; 4: 6927, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25377173

ABSTRACT

The BMP ligand Dpp, operates as a long range morphogen to control many important functions during Drosophila development from tissue patterning to growth. The BMP signal is transduced intracellularly via C-terminal phosphorylation of the BMP transcription factor Mad, which forms an activity gradient in developing embryonic tissues. Here we show that Cyclin dependent kinase 8 and Shaggy phosphorylate three Mad linker serines. We demonstrate that linker phosphorylations control the peak intensity and range of the BMP signal across rapidly developing embryonic tissues. Shaggy knockdown broadened the range of the BMP-activity gradient and increased high threshold target gene expression in the early embryo, while expression of a Mad linker mutant in the wing disc resulted in enhanced levels of C-terminally phosphorylated Mad, a 30% increase in wing tissue, and elevated BMP target genes. In conclusion, our results describe how Mad linker phosphorylations work to control the peak intensity and range of the BMP signal in rapidly developing Drosophila tissues.


Subject(s)
Bone Morphogenetic Proteins/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Morphogenesis/genetics , Transcription Factors/genetics , Wings, Animal/metabolism , Animals , Bone Morphogenetic Proteins/metabolism , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Embryo, Nonmammalian , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Phosphorylation , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Transcription Factors/metabolism , Wings, Animal/cytology , Wings, Animal/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...