Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Cancer Res ; 11(10): 5027-5037, 2021.
Article in English | MEDLINE | ID: mdl-34765309

ABSTRACT

Helicobacter pylori antibiotic resistance is a serious concern in China, where it severely influences treatment for H. pylori infection. To overcome this, it is essential to apply personalized therapies based on local or individual data on antibiotic-resistant phenotypes or genotypes. We conducted a large-scale multi-center study with a retrospective cross-sectional observational design to investigate the antibiotic-resistant phenotypes and genotypes of H. pylori in China. Strains were isolated from the gastric biopsy samples of H. pylori-infected patients from five different regions in China. The strains were tested for antibiotic-resistant phenotypes and genotypes, and the agreement between the two was assessed. In total, 4242 H. pylori strains were isolated and cultured, with an 84.43% success rate. The primary and secondary antibiotic resistance rates of H. pylori were 37.00% and 76.93% for clarithromycin, 34.21% and 61.58% for levofloxacin, 2.20% and 6.12% for amoxicillin, 1.61% and 3.11% for furazolidone, 1.18% and 3.31% for tetracycline, and 87.87% and 93.48% for metronidazole, respectively. The dual-resistance patterns for metronidazole/clarithromycin, metronidazole/levofloxacin, and clarithromycin/levofloxacin were 43.6%, 38.4%, and 26.1%, respectively. Clarithromycin- and levofloxacin-resistant H. pylori phenotypes and genotypes showed satisfactory agreement. Based on these findings, clarithromycin- and levofloxacin-resistant genotype testing could partially replace traditional antibiotic susceptibility testing in China. Continuous monitoring and personalized treatments based on individual and local H. pylori antibiotic-resistance data remain necessary.

2.
Am J Transl Res ; 12(4): 1348-1354, 2020.
Article in English | MEDLINE | ID: mdl-32355546

ABSTRACT

BACKGROUND: Since December 2019, there had been an outbreak of COVID-19 in Wuhan, China. At present, diagnosis COVID-19 were based on real-time RT-PCR, which have to be performed in biosafe laboratory and is unsatisfactory for suspect case screening. Therefore, there is an urgent need for rapid diagnostic test for COVID-19. OBJECTIVE: To evaluate the diagnostic performance and clinical utility of the colloidal gold immunochromatography assay for SARS-Cov-2 specific IgM/IgG anti-body detection in suspected COVID-19 cases. METHODS: In the prospective cohort, 150 patients with fever or respiratory symptoms were enrolled in Taizhou Public Health Medical Center, Taizhou Hospital, Zhejiang province, China, between January 20 to February 2, 2020. All patients were tested by the colloidal gold immunochromatography assay for COVID-19. At least two samples of each patient were collected for RT-PCR assay analysis, and the PCR results were performed as the reference standard of diagnosis. Meanwhile 26 heathy blood donor were recruited. The sensitivity and specificity of the immunochromatography assay test were evaluated. Subgroup analysis were performed with respect to age, sex, period from symptom onset and clinical severity. RESULTS: The immunochromatography assay test had 69 positive result in the 97 PCR-positive cases, achieving sensitivity 71.1% [95% CI 0.609-0.797], and had 2 positive result in the 53 PCR-negative cases, achieving specificity 96.2% [95% CI 0.859-0.993]. In 26 healthy donor blood samples, the immunochromatography assay had 0 positive result. In subgroup analysis, the sensitivity was significantly higher in patients with symptoms more than 14 days 95.2% [95% CI 0.741-0.998] and patients with severe clinical condition 86.0% [95% CI 0.640-0.970]. CONCLUSIONS: The colloidal gold immunochromatography assay for SARS-Cov-2 specific IgM/IgG anti-body had 71.1% sensitivity and 96.2% specificity in this population, showing the potential for a useful rapid diagnosis test for COVID-19. Further investigations should be done to evaluate this assay in variety of clinical settings and populations.

3.
Cell Res ; 27(11): 1327-1340, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28994416

ABSTRACT

Chenopodium quinoa is a halophytic pseudocereal crop that is being cultivated in an ever-growing number of countries. Because quinoa is highly resistant to multiple abiotic stresses and its seed has a better nutritional value than any other major cereals, it is regarded as a future crop to ensure global food security. We generated a high-quality genome draft using an inbred line of the quinoa cultivar Real. The quinoa genome experienced one recent genome duplication about 4.3 million years ago, likely reflecting the genome fusion of two Chenopodium parents, in addition to the γ paleohexaploidization reported for most eudicots. The genome is highly repetitive (64.5% repeat content) and contains 54 438 protein-coding genes and 192 microRNA genes, with more than 99.3% having orthologous genes from glycophylic species. Stress tolerance in quinoa is associated with the expansion of genes involved in ion and nutrient transport, ABA homeostasis and signaling, and enhanced basal-level ABA responses. Epidermal salt bladder cells exhibit similar characteristics as trichomes, with a significantly higher expression of genes related to energy import and ABA biosynthesis compared with the leaf lamina. The quinoa genome sequence provides insights into its exceptional nutritional value and the evolution of halophytes, enabling the identification of genes involved in salinity tolerance, and providing the basis for molecular breeding in quinoa.


Subject(s)
Chenopodium quinoa/genetics , Genome, Plant , Salinity , Abscisic Acid/biosynthesis , Abscisic Acid/metabolism , Chenopodium quinoa/chemistry , Chenopodium quinoa/classification , Chenopodium quinoa/metabolism , Evolution, Molecular , Genomics , Lysine/analysis , Molecular Sequence Annotation , Phylogeny , Plant Epidermis/cytology , Plant Epidermis/metabolism , Signal Transduction , Transcriptome
4.
Stand Genomic Sci ; 12: 29, 2017.
Article in English | MEDLINE | ID: mdl-28428834

ABSTRACT

Ralstonia solanacearum is an extremely destructive pathogen able to cause disease in a wide range of host plants. Here we report the draft genome sequences of the strains FJAT-91, FJAT-452 and FJAT-462, isolated from tomato, eggplant, and chili pepper, respectively, in China. In addition to the genome annotation, we performed a search for type-III secreted effectors in these strains, providing a detailed annotation of their presence and distinctive features compared to the effector repertoire of the reference phylotype I strain (GMI1000). In this analysis, we found that each strain has a unique effector repertoire, encoding both strain-specific effector variants and variations shared among all three strains. Our study, based on strains isolated from different hosts within the same geographical location, provides insight into effector repertoires sufficient to cause disease in different hosts, and may contribute to the identification of host specificity determinants for R. solanacearum.

5.
Nat Genet ; 45(10): 1168-75, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24013640

ABSTRACT

Cystic echinococcosis (hydatid disease), caused by the tapeworm E. granulosus, is responsible for considerable human morbidity and mortality. This cosmopolitan disease is difficult to diagnose, treat and control. We present a draft genomic sequence for the worm comprising 151.6 Mb encoding 11,325 genes. Comparisons with the genome sequences from other taxa show that E. granulosus has acquired a spectrum of genes, including the EgAgB family, whose products are secreted by the parasite to interact and redirect host immune responses. We also find that genes in bile salt pathways may control the bidirectional development of E. granulosus, and sequence differences in the calcium channel subunit EgCavß1 may be associated with praziquantel sensitivity. Our study offers insights into host interaction, nutrient acquisition, strobilization, reproduction, immune evasion and maturation in the parasite and provides a platform to facilitate the development of new, effective treatments and interventions for echinococcosis control.


Subject(s)
Echinococcus granulosus/genetics , Genome, Helminth , Amino Acid Sequence , Animals , Echinococcus granulosus/immunology , Echinococcus granulosus/physiology , Immune Evasion , Molecular Sequence Data , Phylogeny , Reproduction , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...