Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Ultramicroscopy ; 262: 113982, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38692140

ABSTRACT

Backscattered electron (BSE) imaging based on scanning electron microscopy (SEM) has been widely used in scientific and industrial disciplines. However, achieving consistent standards and precise quantification in BSE images has proven to be a long-standing challenge. Previous methods incorporating dedicated calibration processes and Monte Carlo simulations have still posed practical limitations for widespread adoption. Here we introduce a bolometer platform that directly measures the absorbed thermal energy of the sample and demonstrates that it can help to analyze the atomic number (Z) of the investigated samples. The technique, named Atomic Number Electron Microscopy (ZEM), employs the conservation of energy as the foundation of standardization and can serve as a nearly ideal BSE detector. Our approach combines the strengths of both BSE and ZEM detectors, simplifying quantitative analysis for samples of various shapes and sizes. The complementary relation between the ZEM and BSE signals also makes the detection of light elements or compounds more accessible than existing microanalysis techniques.

2.
J Synchrotron Radiat ; 31(Pt 2): 252-259, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38241123

ABSTRACT

In this study, a combination of X-ray excited optical luminescence (XEOL), time-resolved XEOL (TR-XEOL) and the Hanbury-Brown and Twiss (HB-T) interferometer at the Taiwan Photon Source (TPS) 23A X-ray nanoprobe beamline for exploring quantum materials is demonstrated. On the basis of the excellent spatial resolution rendered using a nano-focused beam, emission distributions of artificial micro-diamonds can be obtained by XEOL maps, and featured emission peaks of a selected local area can be obtained by XEOL spectra. The hybrid bunch mode of the TPS not only provides a sufficiently high peak power density for experiments at each beamline but also permits high-quality temporal domain (∼200 ns) measurements for investigating luminescence dynamics. From TR-XEOL measurements, the decay lifetime of micro-diamonds is determined to be approximately 16 ns. Furthermore, the XEOL spectra of artificial micro-diamonds can be investigated by the HB-T interferometer to identify properties of single-photon sources. The unprecedented strategy of combining XEOL, TR-XEOL and the HB-T interferometer at the X-ray nanoprobe beamline will open new avenues with significant characterization abilities for unraveling the emission mechanisms of single-photon sources for quantum materials.

3.
Int J Mol Sci ; 24(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37108146

ABSTRACT

Purple sweet potato (PSP) powder with anthocyanins possesses the ability to reduce oxidative stress and inflammation. Studies have presumed a positive correlation between body fat and dry eye disease (DED) in adults. The regulation of oxidative stress and inflammation has been proposed as the mechanism underlying DED. This study developed an animal model of high fat diet (HFD)-induced DED. We added 5% PSP powder to the HFD to evaluate the effects and underlying mechanisms in mitigating HFD-induced DED. A statin drug, atorvastatin, was also added to the diet separately to assess its effect. The HFD altered the structure of lacrimal gland (LG) tissue, reduced LG secretory function, and eliminated the expression of proteins related to DED development, including α-smooth muscle actin and aquaporin-5. Although PSP treatment could not significantly reduce body weight or body fat, it ameliorated the effects of DED by preserving LG secretory function, preventing ocular surface erosion, and preserving LG structure. PSP treatment increased superoxide dismutase levels but reduced hypoxia-inducible factor 1-α levels, indicating that PSP treatment reduced oxidative stress. PSP treatment increased ATP-binding cassette transporter 1 and acetyl-CoA carboxylase 1 levels in LG tissue, signifying that PSP treatment regulated lipid homeostasis maintenance to reduce the effects of DED. In conclusion, PSP treatment ameliorated the effects of HFD-induced DED through the regulation of oxidative stress and lipid homeostasis in the LG.


Subject(s)
Dry Eye Syndromes , Ipomoea batatas , Animals , Anthocyanins/chemistry , Diet, High-Fat/adverse effects , Ipomoea batatas/metabolism , Powders , Lipids , Dry Eye Syndromes/metabolism , Inflammation/drug therapy
4.
J Synchrotron Radiat ; 29(Pt 3): 888-895, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35511022

ABSTRACT

An attenuator is generally used to decrease the power of an X-ray beam and prevent damage to detector sensors and other optical components. Therefore, attenuators are designed using foil or gas to absorb light source power. In this project, a large aperture and a water-cooling attenuator system are construed for the TPS 31A Projection X-ray Microscope and Transmission X-ray Microscope beamline. The source size of the wiggler is 300 µm × 7 µm on TPS 31A. The X-ray beam size at the sample position is 50 mm × 20 mm, located 49.5 m from the source. The light emission power is 1000 W in white-beam operation mode. The attenuator is needed to absorb energy for the light source and it has 12 foil carriers. The absorption foil size is 56 mm × 46 mm for the beam size across different beamline operation modes, and the cooling capacity is greater than 1000 W. This study applies a magnetic coupling-type attenuator system with foil carrier cooling carried out by the side chamber walls without the feedthrough having water enter the chamber to solve the thermal dissipation issue.

5.
J Synchrotron Radiat ; 29(Pt 2): 456-461, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35254309

ABSTRACT

This study develops and successfully demonstrates visualization methods for the characterization of europium (Eu)-doped BaAl2O4 phosphors using X-ray nanoprobe techniques. X-ray fluorescence (XRF) mapping not only gives information on the elemental distributions but also clearly reveals the valence state distributions of the Eu2+ and Eu3+ ions. The accuracy of the estimated valence state distributions was examined by performing X-ray absorption spectroscopy (XAS) across the Eu L3-edge (6.977 keV). The X-ray excited optical luminescence (XEOL) spectra exhibit different emission lines in the selected local areas. Their corresponding emission distributions can be obtained via XEOL mapping. The emission properties can be understood through correlation analysis. The results demonstrate that the main contribution to the luminescence intensity of the Eu-doped BaAl2O4 comes from the Eu2+ activator and the emission intensity will not be influenced by the concentration of Eu2+ or Eu3+ ions. It is anticipated that X-ray nanoprobes will open new avenues with significant characterization ability for unravelling the emission mechanisms of phosphor materials.

6.
Nano Lett ; 22(7): 2667-2673, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35266397

ABSTRACT

Recent developments in nanoscale thermal metrology using electron microscopy have made impressive advancements in measuring either phononic or thermal transport properties of nanoscale samples. However, its potential in material analysis has never been considered. Here we introduce a direct thermal absorbance measurement platform in scanning electron microscope (SEM) and demonstrate that its signal can be utilized for atomic number (Z) analysis at nanoscales. We prove that the measured absorbance of materials is complementary to signals of backscattering electrons but exhibits a much higher collection efficiency and signal-to-noise ratio. Thus, it not only enables successful detections of light elements/compounds under low acceleration voltages of SEM but also allows quantitative Z analyses in agreement with simulations. The direct thermal absorbance measurement platform would become an ideal tool for SEM, especially for thin films, light elements/compounds, or biological samples at nanoscales.


Subject(s)
Electrons , Microscopy, Electron, Scanning
7.
Inorg Chem ; 60(10): 6930-6938, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33792308

ABSTRACT

Heterogeneous catalysis based on air-stable lanthanide complexes is relatively rare, especially for electrochemical water oxidation and reduction. Therefore, it is highly desired to investigate the synergy caused by cocatalysts on the lanthanide complex family for heterogeneous catalysis because of their structural diversity, air/moisture insensitivity, and easy preparation under an air atmosphere. Two mononuclear and three dinuclear dysprosium complexes containing a series of Schiff-base ligands have been demonstrated as robust electrocatalysts for triggering heterogeneous water oxidation in alkaline solution, in which the complex [Dy2(hmb)2(OAc)4]·MeCN(3) was revealed to have the best activity toward heterogeneous water oxidation among all five complexes in the present study. The molecular activation of dysprosium complexes has also been investigated with a series of N-containing heterocyclic additives [i.e., 4-(dimethylamino)pyridine (DMAP), bis(triphenylphosphine)iminium chloride ([PPN]Cl), indole, and quinoline]. In particular, the corresponding overpotential was effectively enhanced by 211 mV (at a current density of 10 mA cm-2) with the assistance of DMAP. On the basis of electrochemical and ex situ/in situ spectroscopic investigations, the best catalyst, DMAP-complex 3 on a carbon paper electrode, was confirmed with well-maintained molecular identity during heterogeneous water oxidation free of forming any dysprosium oxide and/or undesired products.

8.
J Synchrotron Radiat ; 27(Pt 1): 217-221, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31868755

ABSTRACT

Time-resolved X-ray excited optical luminescence (TR-XEOL) was developed successfully for the 23A X-ray nanoprobe beamline located at the Taiwan Photon Source (TPS). The advantages of the TR-XEOL facility include (i) a nano-focused X-ray beam (<60 nm) with excellent spatial resolution and (ii) a streak camera that can simultaneously record the XEOL spectrum and decay time. Three time spans, including normal (30 ps to 2 ns), hybrid (30 ps to 310 ns) and single (30 ps to 1.72 µs) bunch modes, are available at the TPS, which can fulfil different experimental conditions involving samples with various lifetimes. It is anticipated that TR-XEOL at the TPS X-ray nanoprobe could provide great characterization capabilities for investigating the dynamics of photonic materials.

9.
Sci Rep ; 9(1): 207, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30659221

ABSTRACT

The multifunctional hard X-ray nanoprobe at Taiwan Photon Source (TPS) exhibits the excellent ability to simultaneously characterize the X-ray absorption, X-ray excited optical luminescence (XEOL) as well as the dynamics of XEOL of materials. Combining the scanning electron microscope (SEM) into the TPS 23A end-station, we can easily and quickly measure the optical properties to map out the morphology of a ZnO microrod. A special phenomenon has been observed that the oscillations in the XEOL associated with the confinement of the optical photons in the single ZnO microrod shows dramatical increase while the X-ray excitation energy is set across the Zn K-edge. Besides having the nano-scale spatial resolution, the synchrotron source also gives a good temporal domain measurement to investigate the luminescence dynamic process. The decay lifetimes of different emission wavelengths and can be simultaneously obtained from the streak image. Besides, SEM can provide the cathodoluminescence (CL) to be a complementary method to analyze the emission properties of materials, we anticipate that the X-ray nanoprobe will open new avenues with great characterization ability for developing nano/microsized optoelectronic devices.

10.
Opt Express ; 26(3): 2731-2739, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401809

ABSTRACT

Polarization-dependent hard X-ray excited optical luminescence (XEOL) was used to study not only the optical properties but also the crystallographic orientations of a non-polar a-plane ZnO wafer. In addition to a positive-edge jump and extra oscillations in the near-band-edge (NBE) XEOL yield, we observed a blue shift of the NBE emission peak that follows the polarization-dependent X-ray absorption near-edge structure (XANES) as the X-ray energy is tuned across the Zn K-edge. This NBE blue shift is caused by the larger X-ray absorption, generating higher free carriers to reduce the exciton-LO phonon coupling, which causes a decrease in the exciton activation energy. The extra oscillations in XANES and XEOL as the polarization is set parallel to the c-axis is attributed to simultaneous excitations of the Zn 4p - O 2pπ -bond along the c-axis and the bilayer σ-bond, whereas only the σ-bond is excited when the polarization is perpendicular to the c-axis. The polarization-dependent XEOL spectra can be used to determine the crystallographic orientations.

11.
Chemosphere ; 166: 126-134, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27693873

ABSTRACT

The formation of haloacetamides (HAcAms) and haloacetonitriles (HANs) from a solution containing natural organic matter and a secondary effluent sample was evaluated for disinfection by chlorination, chloramination, and chlorination followed by chloramination (Cl2NH2Cl process). The use of preformed monochloramine (NH2Cl) produced higher concentrations of HAcAms and lower concentrations of HANs than chlorination, while the Cl2NH2Cl process produced the highest concentrations of HAcAms and HANs. These results indicate that the Cl2NH2Cl process, which inhibited the formation of regulated trihalomethanes compared with chlorination, enhanced the formation of HAcAms and HANs. For disinfection in the presence of bromide, brominated dihaloacetamides and dihaloacetonitriles were formed, and the trends were similar to those observed for chlorinated species in the absence of bromide. The degrees of bromine substitution of dihaloacetamides and dihaloacetonitriles were highest for chlorination, followed by the Cl2NH2Cl process and then by the NH2Cl process. For the Cl2NH2Cl process, HAN formation kept gradually increasing with prechlorination time increasing from 0 to 120 min, while HAcAm formation increased only until it reached a maximum at around 10-30 min. These results suggest that the prechlorination time could be reduced to control the formation of HAcAms and HANs. During chloramination, the formation of HAcAms and HANs was lower when using preformed NH2Cl than when chloramines were formed in situ, with higher formation of HAcAms and HANs when chlorine was added before ammonia than vice versa for the secondary effluent; this finding suggests that preformed NH2Cl could be used to inhibit the formation of HAcAms and HANs during chloramination.


Subject(s)
Acetamides/chemistry , Acetonitriles/chemistry , Chloramines/chemistry , Chlorine/chemistry , Disinfectants/chemistry , Halogenation , Water Pollutants, Chemical/chemistry , Acetamides/isolation & purification , Acetonitriles/isolation & purification , Amination , Disinfection , Water Pollutants, Chemical/isolation & purification , Water Purification
12.
Rev Sci Instrum ; 80(4): 043705, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19405664

ABSTRACT

Atomic force microscope (AFM) is a powerful tool for force measurement in nanoscale. Many methods have been developed to obtain the precise cantilever's spring constant for improving the accuracy of force measurement. AFM cantilevers are usually made by single crystal silicon of which the anisotropic material property seriously affects the spring constant of cantilevers and has not considered before. In this paper, the density function theory was used to calculate the anisotropic stiffness matrix of crystal silicon, which was used in the finite element analysis to calculate lateral, axial, bending spring constants, and resonant frequencies of rectangular AFM cantilevers. These results were compared with those derived from other theoretical methods and with those provided by the manufacturers. The results showed that the anisotropic material property significantly affected the spring constants and the resonant frequencies of the AFM cantilever. The assumption of equivalent isotropic property of the rectangular AFM cantilever would cause an error up to 29.72%. Furthermore, two equations were proposed to obtain the spring constants and the resonant frequencies of crystal silicon AFM cantilever with the axis located at different cantilever-crystal angles.

13.
Ultramicroscopy ; 108(10): 1025-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18547729

ABSTRACT

Atomic force microscopy (AFM) can be used to measure the surface morphologies and the mechanical properties of nanostructures. The force acting on the AFM cantilever can be obtained by multiplying the spring constant of AFM cantilever and the corresponding deformation. To improve the accuracy of force experiments, the spring constant of AFM cantilever must be calibrated carefully. Many methods, such as theoretical equations, the finite element method, and the use of reference cantilever, were reported to obtain the spring constant of AFM cantilevers. For the cantilever made of single crystal, the Poisson's ratio varies with different cantilever-crystal angles. In this paper, the influences of Poisson's ratio variation on the lateral spring constant and axial spring constant of rectangular and V-shaped AFM cantilevers, with different tilt angles and normal forces, were investigated by the finite element analysis. When the cantilever's tilt angle is 20 degrees and the Poisson's ratio varies from 0.02 to 0.4, the finite element results show that the lateral spring constants decrease 11.75% for the rectangular cantilever with 1 microN landing force and decrease 18.60% for the V-shaped cantilever with 50 nN landing force, respectively. The influence of Poisson's ratio variation on axial spring constant is less than 3% for both rectangular and V-shaped cantilevers. As the tilt angle increases, the axial spring constants for rectangular and V-shaped cantilevers decrease substantially. The results obtained can be used to improve the accuracy of the lateral force measurement when using atomic force microscopy.

14.
Anal Chem ; 79(4): 1333-8, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17297931

ABSTRACT

Atomic force microscopy (AFM) probe with different functions can be used to measure the bonding force between atoms or molecules. In order to have accurate results, AFM cantilevers must be calibrated precisely before use. The AFM cantilever's spring constant is usually provided by the manufacturer, and it is calculated from simple equations or some other calibration methods. The spring constant may have some uncertainty, which may cause large errors in force measurement. In this paper, finite element analysis was used to obtain the deformation behavior of the AFM cantilever and to calculate its spring constant. The influence of prestress, ignored by other methods, is discussed in this paper. The variations of Young's modulus, Poisson's ratio, cantilever geometries, tilt angle, and the influence of image tip mass were evaluated to find their effects on the cantilever's characteristics. The results were compared with those obtained from other methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...