Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
bioRxiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585971

ABSTRACT

Micropatterned human pluripotent stem cells (hPSCs) treated with BMP4 (2D gastruloids) are among the most widely used stem cell models for human gastrulation. Due to its simplicity and reproducibility, this system is ideal for high throughput quantitative studies of tissue patterning and has led to many insights into the mechanisms of mammalian gastrulation. However, 2D gastruloids have only been studied up to 48h. Here we extended this system to 96h. We discovered a phase of highly reproducible morphogenesis during which directed migration from the primitive streak-like region gives rise to a mesodermal layer beneath an epiblast-like layer. Multiple types of mesoderm arise with striking spatial organization including lateral mesoderm-like cells on the colony border and paraxial mesoderm-like further inside the colony. Single cell transcriptomics showed strong similarity of these cells to mesoderm in human and non-human primate embryos. However, our data suggest that the annotation of the reference human embryo may need to be revised. This illustrates that extended culture of 2D gastruloids provides a powerful model for human mesoderm differentiation and morphogenesis.

2.
Chemistry ; : e202401063, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654592

ABSTRACT

14,14'-Bidibenzo[a,j]anthracenes (BDBAs) were prepared by iridium-catalyzed annulation of 5,5'-biterphenylene with alkynes. Overcrowded BDBAs with highly distorted molecular halves and a small interplanar angle between two anthryl moieties (down to approximately 31º, currently the lowest reported value) were verified by X-ray crystallography. The strong intramolecular interactions and electronic couplingsbetween two molecular halves resulted in upfield 1H NMR signals, redshifted absorption and emission bands, and a reduced HOMO-LUMO gap. Photodynamic investigations on BDBAs indicated that the formation of the conventional symmetry-breaking charge transfer (SBCT) state was suspended by restricted rocking around the central C-C bond. Such a mechanism associated with this highly constrained conformation was examined for the first time.

3.
Nat Commun ; 15(1): 1471, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368368

ABSTRACT

How paracrine signals are interpreted to yield multiple cell fate decisions in a dynamic context during human development in vivo and in vitro remains poorly understood. Here we report an automated tracking method to follow signaling histories linked to cell fate in large numbers of human pluripotent stem cells (hPSCs). Using an unbiased statistical approach, we discover that measured BMP signaling history correlates strongly with fate in individual cells. We find that BMP response in hPSCs varies more strongly in the duration of signaling than the level. However, both the level and duration of signaling activity control cell fate choices only by changing the time integral. Therefore, signaling duration and level are interchangeable in this context. In a stem cell model for patterning of the human embryo, we show that signaling histories predict the fate pattern and that the integral model correctly predicts changes in cell fate domains when signaling is perturbed. Our data suggest that mechanistically, BMP signaling is integrated by SOX2.


Subject(s)
Pluripotent Stem Cells , Humans , Cell Differentiation , Signal Transduction
4.
Article in English | MEDLINE | ID: mdl-38393895

ABSTRACT

 Secretory carcinoma of the breast (SCB) is a rare and specific type of breast cancer. Owing to its rarity, the number of SCB reports available is limited, with most of them focusing on clinical and pathological characteristics but no reports on its multimodal ultrasound (US) features. Thus, we present a rare case of SCB, retrospectively analyzing manifestations of US and contrast-enhanced US, as well as its pathological basis, aiming to enhance the understanding of US image features of SCB and provide more valuable information for clinical diagnosis. Moreover, the treatment strategy adopted for this patient may serve as a template for future management of SCB.

5.
Angew Chem Int Ed Engl ; 63(16): e202401103, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38412017

ABSTRACT

Singlet fission (SF) holds great promise for current photovoltaic technologies, where tetracenes, with their relatively high triplet energies, play a major role for application in silicon-based solar cells. However, the SF efficiencies in tetracene dimers are low due to the unfavorable energetics of their singlet and triplet energy levels. In the solid state, tetracene exhibits high yields of triplet formation through SF, raising great interest about the underlying mechanisms. To address this discrepancy, we designed and prepared a novel molecular system based on a hexaphenylbenzene core decorated with 2 to 6 tetracene chromophores. The spatial arrangement of tetracene units, induced by steric hindrance in the central part, dictates through-space coupling, making it a relevant model for solid-state chromophore organization. We then revealed a remarkable increase in SF quantum yield with the number of tetracenes, reaching quantitative (196 %) triplet pair formation in hexamer. We observed a short-lived correlated triplet pair and limited magnetic effects, indicating ineffective triplet dissociation in these through-space coupled systems. These findings emphasize the crucial role of the number of chromophores involved and the interchromophore arrangement for the SF efficiency. The insights gained from this study will aid designing more efficient and technology-compatible SF systems for applications in photovoltaics.

6.
Soft Robot ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38386776

ABSTRACT

Teleoperation in soft robotics can endow soft robots with the ability to perform complex tasks through human-robot interaction. In this study, we propose a teleoperated anthropomorphic soft robot hand with variable degrees of freedom (DOFs) and a metamorphic palm. The soft robot hand consists of four pneumatic-actuated fingers, which can be heated to tune stiffness. A metamorphic mechanism was actuated to morph the hand palm by servo motors. The human fingers' DOF, gesture, and muscle stiffness were collected and mapped to the soft robotic hand through the sensory feedback from surface electromyography devices on the jib. The results show that the proposed soft robot hand can generate a variety of anthropomorphic configurations and can be remotely controlled to perform complex tasks such as primitively operating the cell phone and placing the building blocks. We also show that the soft hand can grasp a target through the slit by varying the DOFs and stiffness in a trail.

8.
Nat Commun ; 15(1): 707, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267492

ABSTRACT

Designing an organic polymer photocatalyst for efficient hydrogen evolution with visible and near-infrared (NIR) light activity is still a major challenge. Unlike the common behavior of gradually increasing the charge recombination while shrinking the bandgap, we present here a series of polymer nanoparticles (Pdots) based on ITIC and BTIC units with different π-linkers between the acceptor-donor-acceptor (A-D-A) repeated moieties of the polymer. These polymers act as an efficient single polymer photocatalyst for H2 evolution under both visible and NIR light, without combining or hybridizing with other materials. Importantly, the difluorothiophene (ThF) π-linker facilitates the charge transfer between acceptors of different repeated moieties (A-D-A-(π-Linker)-A-D-A), leading to the enhancement of charge separation between D and A. As a result, the PITIC-ThF Pdots exhibit superior hydrogen evolution rates of 279 µmol/h and 20.5 µmol/h with visible (>420 nm) and NIR (>780 nm) light irradiation, respectively. Furthermore, PITIC-ThF Pdots exhibit a promising apparent quantum yield (AQY) at 700 nm (4.76%).

9.
Sci Total Environ ; 912: 169036, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38061639

ABSTRACT

Ammonia (NH3) is an irritating gas and atmospheric pollutant that endangers the health of humans and animals by stimulating respiratory tract's mucosa and causing liver damage. However, physiological role of ammonia gas in hepatotoxicity remains unclear. To investigate the hepatotoxic effects of inhaled ammonia gas, experiments were conducted using mouse model exposed to 100 ppm of ammonia gas for 21 days. The exposed mice exhibited signs of depression, emaciation, and reduced growth. This study revealed that inhalation of ammonia led to significant decrease in water (P < 0.0001) and food intake (P < 0.05), resulting in slower growth. Histopathological analysis showed that ammonia stress alters the microstructure of the liver by enlarging the gap between hepatic lobule and fibrosis. Moreover, ammonia-induced stress significantly reduces the expression of the anti-apoptotic protein BCl-2 (P < 0.001), while elevates the mRNA expression of the pro-apoptotic gene Bax (P < 0.001). Furthermore, ammonia inhalation significantly increases the protein expression of LC-3bII (P < 0.05) and the mRNA expression of autophagy-related gene 5 (ATG5) (P < 0.05) and p62 (P < 0.05) while remarkably decreases the mRNA expression of mammalian target of rapamycin (m-TOR) (P < 0.05). In conclusion, this study demonstrates that inhalation of ammonia gas causes liver damage and suggests autophagy happening via m-TOR/p62/LC-3bII and pro-apoptosis effect mediated by Bax/BCl-2 in the liver damage caused by ammonia inhalation. Our study provides a new perspective on ammonia-induced hepatotoxicity.


Subject(s)
Ammonia , Chemical and Drug Induced Liver Injury , Humans , Mice , Animals , bcl-2-Associated X Protein , Ammonia/toxicity , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , Apoptosis , Hepatocytes , RNA, Messenger , Chemical and Drug Induced Liver Injury/pathology , Autophagy , Mammals/metabolism , Autophagy-Related Protein 5/pharmacology
10.
Small ; 20(6): e2304743, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37803930

ABSTRACT

Converting solar energy into hydrogen energy using conjugated polymers (CP) is a promising solution to the energy crisis. Improving water solubility plays one of the critical factors in enhancing the hydrogen evolution rate (HER) of CP photocatalysts. In this study, a novel concept of incorporating hydrophilic side chains to connect the backbones of CPs to improve their HER is proposed. This concept is realized through the polymerization of carbazole units bridged with octane, ethylene glycol, and penta-(ethylene glycol) to form three new side-chain-braided (SCB) CPs: PCz2S-OCt, PCz2S-EG, and PCz2S-PEG. Verified through transient absorption spectra, the enhanced capability of PCz2S-PEG for ultrafast electron transfer and reduced recombination effects has been demonstrated. Small- and wide-angle X-ray scattering (SAXS/WAXS) analyses reveal that these three SCB-CPs form cross-linking networks with different mass fractal dimensions (f) in aqueous solution. With the lowest f value of 2.64 and improved water/polymer interfaces, PCz2S-PEG demonstrates the best HER, reaching up to 126.9 µmol h-1 in pure water-based photocatalytic solution. Moreover, PCz2S-PEG exhibits comparable performance in seawater-based photocatalytic solution under natural sunlight. In situ SAXS analysis further reveals nucleation-dominated generation of hydrogen nanoclusters with a size of ≈1.5 nm in the HER of PCz2S-PEG under light illumination.

11.
Chemistry ; 30(11): e202303523, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37997021

ABSTRACT

A new series of biaryls, bi-linear-terphenylenes (BLTPs), were prepared using the tert-butyllithium-mediated cyclization as the key synthetic step. The three-dimensional structures of the studied compounds were verified using X-ray crystallography and DFT calculations. Tetraaryl(ethynyl)-substituted BLTPs are highly crowded molecules, and the internal rotation around the central C-C bond is restricted due to a high barrier (>50 kcal/mol). These structures contain several aryl/terphenylenyl/aryl sandwiches, where the through-space π-π (TSPP) interactions are strongly reflected in the shielding of 1 H NMR chemical shifts, reduction of oxidation potentials, increasing aromaticity of the central six-membered ring and decreasing antiaromaticity of the four-membered rings in a terphenylenyl moiety based on NICS(0) and iso-chemical shielding surfaces. Despite the restricted C-C bond associated intramolecular TSPP interactions for BLTPs in the ground state, to our surprise, the electronic coupling between two linear terphenylenes (LTPs) in BLTPs in the excited state is weak, so that the excited-state behavior is dominated by the corresponding monomeric LTPs. In other words, all BLTPs undergo ultrafast relaxation dynamics via strong exciton-vibration coupling, acting as a blue-light absorber with essentially no emission.

12.
J Mater Chem B ; 12(2): 413-435, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38112639

ABSTRACT

Ferroptosis is a new form of non-apoptotic programmed cell death. Due to its effectiveness in cancer treatment, there are increasing studies on the application of nanoparticles based on ferroptosis in cancer therapy. In this paper, we present a summary of the latest progress in nanoparticles based on ferroptosis for effective tumor therapy. We also describe the combined treatment of ferroptosis with other therapies, including chemotherapy, radiotherapy, phototherapy, immunotherapy, and gene therapy. This summary of drug delivery systems based on ferroptosis aims to provide a basis and inspire opinions for researchers concentrating on exploring this field. Finally, we present some prospects and challenges for the application of nanotherapies to clinical treatment by promoting ferroptosis in cancer cells.


Subject(s)
Ferroptosis , Nanoparticles , Neoplasms , Combined Modality Therapy , Immunotherapy , Phototherapy , Neoplasms/drug therapy
13.
Small ; : e2308676, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072780

ABSTRACT

Highly emissive semiconductor nanocrystals, or so-called quantum dots (QDs) possess a variety of applications from displays and biology labeling, to quantum communication and modern security. Though ensembles of QDs have already shown very high photoluminescent quantum yields (PLQYs) and have been widely utilized in current optoelectronic products, QDs that exhibit high absorption cross-section, high emission intensity, and, most important, nonblinking behavior at single-dot level have long been desired and not yet realized at room temperature. In this work, infrared-emissive MAPbI3 -based halide perovskite QDs is demonstrated. These QDs not only show a ≈100% PLQY at the ensemble level but also, surprisingly, at the single-dot level, display an extra-large absorption cross-section up to 1.80 × 10-12 cm2 and non-blinking single photon emission with a high single photon purity of 95.3%, a unique property that is extremely rare among all types of quantum emitters operated at room temperature. An in-depth analysis indicates that neither trion formation nor band-edge carrier trapping is observed in MAPbI3 QDs, resulting in the suppression of intensity blinking and lifetime blinking. Fluence-dependent transient absorption measurements reveal that the coexistence of non-blinking behavior and high single photon purity in these perovskite QDs results from a significant repulsive exciton-exciton interaction, which suppresses the formation of biexciton, and thus greatly reduces photocharging. The robustness of these QDs is confirmed by their excellent stability under continuous 1 h electron irradiation in high-resolution transmission electron microscope inspection. It is believed that these results mark an important milestone in realizing nonblinking single photon emission in semiconductor QDs.

14.
Front Microbiol ; 14: 1291540, 2023.
Article in English | MEDLINE | ID: mdl-38143864

ABSTRACT

Carbapenem-resistant ST11_KL64 Klebsiella pneumoniae emerged as a significant public health concern in Taiwan, peaking between 2013 and 2015, with the majority of isolates exhibiting OXA-48 as the sole carbapenemase. In this study, we employed whole-genome sequencing to investigate the molecular underpinnings of ST11_KL64 isolates collected from 2013 to 2021. Phylogenomic analysis revealed a notable genetic divergence between the ST11_KL64 strains in Taiwan and those in China, suggesting an independent evolutionary trajectory. Our findings indicated that the ST11_KL64_Taiwan lineage originated from the ST11_KL64 lineage in Brazil, with recombination events leading to the integration of ICEKp11 and a 27-kb fragment at the tRNAASN sites, shaping its unique genomic landscape. To further elucidate this unique sublineage, we examined the plasmid contents. In contrast to ST11_KL64_Brazil strains, which predominantly carried blaKPC-2, ST11_KL64_Taiwan strains exhibited the acquisition of an epidemic blaOXA-48-carrying IncL plasmid. Additionally, ST11_KL64_Taiwan strains consistently harbored a multi-drug resistance IncC plasmid, along with a collection of gene clusters that conferred resistance to heavy metals and the phage shock protein system via various Inc-type plasmids. Although few, there were still rare ST11_KL64_Taiwan strains that have evolved into hypervirulent CRKP through the horizontal acquisition of pLVPK variants. Comprehensive characterization of the high-risk ST11_KL64 lineage in Taiwan not only sheds light on its epidemic success but also provides essential data for ongoing surveillance efforts aimed at tracking the spread and evolution of ST11_KL64 across different geographical regions. Understanding the molecular underpinnings of CRKP evolution is crucial for developing effective strategies to combat its emergence and dissemination.

15.
Sci Robot ; 8(84): eadh7852, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38019929

ABSTRACT

Octopuses can whip their soft arms with a characteristic "bend propagation" motion to capture prey with sensitive suckers. This relatively simple strategy provides models for robotic grasping, controllable with a small number of inputs, and a highly deformable arm with sensing capabilities. Here, we implemented an electronics-integrated soft octopus arm (E-SOAM) capable of reaching, sensing, grasping, and interacting in a large domain. On the basis of the biological bend propagation of octopuses, E-SOAM uses a bending-elongation propagation model to move, reach, and grasp in a simple but efficient way. E-SOAM's distal part plays the role of a gripper and can process bending, suction, and temperature sensory information under highly deformed working states by integrating a stretchable, liquid-metal-based electronic circuit that can withstand uniaxial stretching of 710% and biaxial stretching of 270% to autonomously perform tasks in a confined environment. By combining this sensorized distal part with a soft arm, the E-SOAM can perform a reaching-grasping-withdrawing motion across a range up to 1.5 times its original arm length, similar to the biological counterpart. Through a wearable finger glove that produces suction sensations, a human can use just one finger to remotely and interactively control the robot's in-plane and out-of-plane reaching and grasping both in air and underwater. E-SOAM's results not only contribute to our understanding of the function of the motion of an octopus arm but also provide design insights into creating stretchable electronics-integrated bioinspired autonomous systems that can interact with humans and their environments.

16.
Commun Biol ; 6(1): 1215, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38030695

ABSTRACT

The accuracy of Oxford Nanopore Technology (ONT) sequencing has significantly improved thanks to new flowcells, sequencing kits, and basecalling algorithms. However, novel modification types untrained in the basecalling models can seriously reduce the quality. Here we reports a set of ONT-sequenced genomes with unexpected low quality due to novel modification types. Demodification by whole-genome amplification significantly improved the quality but lost the epigenome. We also developed a reference-based method, Modpolish, for correcting modification-mediated errors while retaining the epigenome when a sufficient number of closely-related genomes is publicly available (default: top 20 genomes with at least 95% identity). Modpolish not only significantly improved the quality of in-house sequenced genomes but also public datasets sequenced by R9.4 and R10.4 (simplex). Our results suggested that novel modifications are prone to ONT systematic errors. Nevertheless, these errors are correctable by nucleotide demodification or Modpolish without prior knowledge of modifications.


Subject(s)
Nanopore Sequencing , Sequence Analysis, DNA/methods , Nanopore Sequencing/methods , Nucleotides , Algorithms , Genome
17.
Redox Biol ; 68: 102946, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37924663

ABSTRACT

Diabetic tubulopathy (DT) is a recently recognized key pathology of diabetic kidney disease (DKD). The mitochondria-centric view of DT is emerging as a vital pathological factor in different types of metabolic diseases, such as DKD. Finerenone (FIN), a novel non-steroidal mineralocorticoid receptor antagonist, attenuates kidney inflammation and fibrosis in DKD, but the precise pathomechanisms remain unclear. The role of mineralocorticoid receptor (MR) in perturbing mitochondrial function via the PI3K/Akt/eNOS signaling pathway, including mitochondrial dynamics and mitophagy, was investigated under a diabetic state and high glucose (HG) ambiance. To elucidate how the activation of MR provokes mitochondrial dysfunction in DT, human kidney proximal tubular epithelial (HK-2) cells were exposed to HG, and then mitochondrial dynamics, mitophagy, mitochondrial ROS (mitoROS), signaling molecules PI3K, Akt, Akt phosphorylation and eNOS were probed. The above molecules or proteins were also explored in the kidneys of diabetic and FIN-treated mice. FIN treatment reduced oxidative stress, mitochondrial fragmentation, and apoptosis while restoring the mitophagy via PI3K/Akt/eNOS signaling pathway in HK-2 cells exposed to HG ambiance and tubular cells of DM mice. These findings linked MR activation to mitochondrial dysfunction via PI3K/Akt/eNOS signaling pathway in DT and highlight a pivotal but previously undiscovered role of FIN in alleviating renal tubule injury for the treatment of DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Humans , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Mineralocorticoid Receptor Antagonists/metabolism , Mineralocorticoid Receptor Antagonists/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Diabetic Nephropathies/metabolism , Mitochondria/metabolism , Diabetes Mellitus/metabolism
18.
Int J Mol Sci ; 24(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37834393

ABSTRACT

Ferroptosis is an iron-dependent form of cell death, which is reported to be associated with glioma progression and drug sensitivity. Targeting ferroptosis is a potential therapeutic approach for glioma. However, the molecular mechanism of glioma cell ferroptosis is not clear. In this study, we profile the change of 3D chromatin structure in glioblastoma ferroptosis by using HiChIP and study the 3D gene regulation network in glioblastoma ferroptosis. A combination of an analysis of HiChIP and RNA-seq data suggests that change of chromatin loops mediated by 3D chromatin structure regulates gene expressions in glioblastoma ferroptosis. Genes that are regulated by 3D chromatin structures include genes that were reported to function in ferroptosis, like HDM2 and TXNRD1. We propose a new regulatory mechanism governing glioblastoma cell ferroptosis by 3D chromatin structure.


Subject(s)
Ferroptosis , Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Ferroptosis/genetics , Cell Death , Chromatin/genetics
19.
Microbiol Spectr ; 11(6): e0292223, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37787563

ABSTRACT

IMPORTANCE: Carbapenem resistance arising from the loss of porins is commonly observed in extended-spectrum ß-lactamase (ESBL) and AmpC ß-lactamase-producing strains of certain Enterobacteriaceae genera, including Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa. However, this resistance mechanism is rarely reported in the Salmonella genus. To address this knowledge gap, our study offers genetic evidence demonstrating that the loss of two specific porins (OmpC_378 and OmpD) is crucial for the development of carbapenem resistance in Salmonella ESBL and AmpC ß-lactamase-producing strains. Furthermore, our findings reveal that most Salmonella serovars carry seven porin parathologs, with OmpC_378 and OmpD being the key porins involved in the development of carbapenem resistance in Salmonella strains.


Subject(s)
Anti-Bacterial Agents , Salmonella enterica , Anti-Bacterial Agents/pharmacology , Serogroup , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Salmonella , Escherichia coli/genetics , Carbapenems/pharmacology , Salmonella enterica/genetics , Salmonella enterica/metabolism , Porins/genetics , Microbial Sensitivity Tests
20.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37855450

ABSTRACT

The degradation of ATP-related compounds is an important biochemical process that reflects the freshness of aquatic products after death. There has been considerable interest in investigating the factors affecting the degradation of ATP-related compounds in aquatic products and in developing techniques to detect them. This review provides the latest knowledge on the degradation mechanisms of ATP-related compounds during the storage of aquatic products and discusses the latest advances in ATP-related compound detection techniques. The degradation mechanisms discussed include mainly degradation pathways, endogenous enzymes, and microbial mechanisms of action. Microbial activity is the main reason for the degradation of IMP and related products during the mid to late storage of aquatic products, mainly through the related enzymes produced by microorganisms. Further elucidation of the degradation mechanisms of ATP-related compounds provides new ideas for quality control techniques in raw aquatic products during storage. The development of new technologies for the detection of ATP-related compounds has become a significant area of research. And, biosensors further improve the efficiency and accuracy of detection and have potential application prospects. The development of biosensor back-end modalities (test strips, fluorescent probes, and artificial intelligence) has accelerated the practical application of biosensors for the detection of ATP-related compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...