Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 176(2): e14242, 2024.
Article in English | MEDLINE | ID: mdl-38439528

ABSTRACT

The CONSTANS/CONSTANS-Like (CO/COL) family has been shown to play important roles in flowering, stress tolerance, fruit development and ripening in higher plants. In this study, three COL genes, MiCOL6, MiCOL7A and MiCOL7B, which each contain only one CCT domain, were isolated from mango (Mangifera indica), and their functions were investigated. MiCOL7A and MiCOL7B were expressed mainly at 20 days after flowering (DAF), and all three genes were highly expressed during the flowering induction period. The expression levels of the three genes were affected by light conditions, but only MiCOL6 exhibited a clear circadian rhythm. Overexpression of MiCOL6 promoted earlier flowering, while overexpression of MiCOL7A or MiCOL7B delayed flowering compared to that in the control lines of Arabidopsis thaliana under long-day (LD) and short-day (SD) conditions. Overexpressing MiCOL6, MiCOL7A or MiCOL7B in transgenic plants increased superoxide dismutase (SOD) and proline levels, decreased malondialdehyde (MAD) levels, and improved survival under drought and salt stress. In addition, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses showed that the MiCOL6, MiCOL7A and MiCOL7B proteins interact with several stress- and flower-related proteins. This work demonstrates the functions of MiCOL6, MiCOL7A and MiCOL7B and provides a foundation for further research on the role of mango COL genes in flowering regulation and the abiotic stress response.


Subject(s)
Arabidopsis , Mangifera , Mangifera/genetics , Arabidopsis/genetics , Circadian Rhythm , Droughts , Flowers/genetics , Saccharomyces cerevisiae
2.
Invest Ophthalmol Vis Sci ; 64(15): 32, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38133504

ABSTRACT

Purpose: Retinal ganglion cells (RGCs) are the projection neurons of the retina. Loss of RGCs is the cellular basis for vision loss in patients with glaucoma. Finding ways to regenerate RGCs will aid in the development of regenerative therapies for patients with glaucoma. The aim of this study was to examine the ability of Ngn-family transcription factors (TFs) to induce RGC regeneration through reprogramming in vitro and in vivo. Methods: In vitro, lentiviruses were used to deliver Ngn-TFs into mouse embryonic fibroblasts (MEFs). In vivo, mouse pup retina electroporation was used to deliver Ngn-TFs into late-stage retinal progenitor cells (RPCs). Immunofluorescence staining and RNA sequencing were used to examine cell fate reprogramming; patch-clamp recording was used to examine neuronal electrophysiologic functions. Results: In vitro, all three Ngn-TFs, Ngn1, Ngn2, and Ngn3, were able to work alone to reprogram MEFs into RGC-like neurons that resembled RGCs at the transcriptome level, exhibited typical neuronal membrane electrophysiologic properties, and formed functional synaptic communications with retinal neurons. In vivo, Ngn-TFs reprogrammed the differentiation-competent state of late-stage RPCs to generate RGCs. Conclusions: Ngn-TFs are effective in inducing an RGC-like fate both in vitro and in vivo and might be explored further in the future for glaucoma translational applications.


Subject(s)
Glaucoma , Retinal Ganglion Cells , Humans , Animals , Mice , Retinal Ganglion Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Fibroblasts/metabolism , Retina/metabolism , Glaucoma/metabolism
3.
Physiol Plant ; 175(3): e13923, 2023.
Article in English | MEDLINE | ID: mdl-37133873

ABSTRACT

The SQUAMOSA promoter binding protein-like (SPL) gene family is a unique family of plant-specific transcription factors (TFs), which plays vital roles in a variety of plant biological processes. Its role in betalain biosynthesis in Hylocereus undantus; however, is still unclear. Here, we report a total of 16 HuSPL genes from the pitaya genome, which were unevenly distributed among nine chromosomes. The HuSPL genes were clustered into seven groups, and most HuSPLs within the same group shared similar exon-intron structures and conserved motifs. Eight segment replication events in the HuSPL gene family were the main driving force behind the gene family expansion. Nine of the HuSPL genes had potential target sites for Hmo-miR156/157b. Hmo-miR156/157b-targeted HuSPLs exhibited differential expression patterns compared with constitutive expression patterns of most Hmo-miR156/157b-nontargeted HuSPLs. The expression of Hmo-miR156/157b gradually increased during fruit maturation, while the expression of Hmo-miR156/157b-targeted HuSPL5/11/14 gradually decreased. In addition, the lowest expression level of Hmo-miR156/157b-targeted HuSPL12 was detected 23rd day after flowering, when the middle pulps started to turn red. HuSPL5, HuSPL11, HuSPL12, and HuSPL14 were nucleus-localized proteins. HuSPL12 could inhibit the expression of HuWRKY40 by binding to its promoter. Results from yeast two-hybrid and bimolecular fluorescence complementation assays showed that HuSPL12 could interact with HuMYB1, HuMYB132, or HuWRKY42 TFs responsible for betalain biosynthesis. The results of the present study provide an essential basis for future regulation of betalain accumulation in pitaya.


Subject(s)
MicroRNAs , Plant Proteins , Plant Proteins/metabolism , MicroRNAs/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Promoter Regions, Genetic/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression Regulation, Plant
4.
Sci Total Environ ; 887: 164017, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37172854

ABSTRACT

Microplastics have been widely studied for their ability to adsorb heavy metals. In the natural environment, arsenic exists in different forms and its toxicity depends mainly on its form and concentration. However, different forms of arsenic combined with microplastics have yet to be explored for their biological hazards. This study was conducted to reveal the adsorption mechanism of different forms of arsenic onto PSMP and to study the effects of PSMP on the tissue accumulation and developmental toxicity of different forms of arsenic in zebrafish larvae. As a result, the absorbing ability of PSMP for As(III) was 35 times higher than that of DMAs, in which hydrogen bonding plays an important role in the adsorption process. In addition, the adsorption kinetics of As(III) and DMAs on PSMP were in good agreement with the pseudo-second-order kinetic model. Furthermore, PSMP reduced the accumulation of As(III) early in zebrafish larvae development, thereby increasing hatching rates compared with the As(III)-treated group, whereas PSMP had no significant effect on DMAs accumulation in zebrafish larvae, but decreased hatching rates compared with the DMAs-treated group. In addition, except for the microplastic exposure group, the other treatment groups could lead to a decrease in the heart rate of zebrafish larvae. Both PSMP+As(III) and PSMP+DMAs exhibited aggravated oxidative stress compared with PSMP-treated group, but PSMP+As(III) caused more severe oxidative stress at later stages of zebrafish larvae development. Moreover, specific metabolic differences (e.g., AMP, IMP, and guanosine) were produced in the PSMP+As(III) exposure group, which would mainly affect purine metabolism and promoted specific metabolic disturbances. However, PSMP+DMAs exposure shared metabolic pathways altered by PSMP and DMAs, indicating an independent effect of these two chemicals. Taken together, our findings emphasized that the combined toxicity of PSMP and different forms of arsenic posed a health risk that cannot be ignored.


Subject(s)
Arsenic , Water Pollutants, Chemical , Animals , Microplastics/metabolism , Polystyrenes/metabolism , Zebrafish/physiology , Plastics/metabolism , Arsenic/metabolism , Larva , Water Pollutants, Chemical/toxicity
6.
BMC Plant Biol ; 23(1): 28, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36635619

ABSTRACT

BACKGROUND: Multiple MYB transcription factors (TFs) are involved in the regulation of plant coloring. Betalain is a kind of natural plant pigment and its biosynthesis is regulated by a number of enzymes. Despite this, little is known about the molecular properties and roles of MYB TFs in pitaya betalain biosynthesis. RESULTS: In the present study, we identified a 1R-MYB gene, HuMYB132, which is preferentially expressed in red-pulp pitaya at the mature stage. It was clustered with Arabidopsis R-R-type genes and had two DNA-binding domains and a histidine-rich region. The expression assays in N. benthamiana and yeast indicated that HuMYB132 is a nucleus-localized protein with transcriptional activation activity. Dual luciferase reporter assay and electrophoretic mobility shift assays (EMSA) demonstrated that HuMYB132 could promote the transcriptional activities of HuADH1, HuCYP76AD1-1, and HuDODA1 by binding to their promoters. Silencing HuMYB132 reduced betalain accumulation and the expression levels of betalain biosynthetic genes in pitaya pulps. CONCLUSIONS: According to our findings, HuMYB132, a R-R type member of 1R-MYB TF subfamily, positively regulates pitaya betalain biosynthesis by regulating the expression of HuADH1, HuCYP76AD1-1, and HuDODA1. The present study provides a new theoretical reference for the management of pitaya betalain biosynthesis and also provides an essential basis for future regulation of betalain biosynthesis in Hylocereus.


Subject(s)
Arabidopsis , Betalains , Transcription Factors/metabolism , Promoter Regions, Genetic/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism
7.
Plant Sci ; 328: 111595, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36646140

ABSTRACT

Basic helix-loop-helix (bHLH) proteins are dimeric transcription factors (TFs) involved in various plant physiological and biological processes. Despite this, little is known about the molecular properties and roles of bHLH TFs in pitaya betalain biosynthesis. Here we report the identification of 165 HubHLH genes in H. undantus genome, their chromosomal distribution, physiochemical characteristics, conserved motifs, gene structure, phylogeny and synteny of HubHLH genes. Based on phylogenetic relationship analysis, the 165 HubHLHs were divided into 26 subfamilies and unequally distributed on the 11 chromosomes of pitaya. Based on the pitaya transcriptome data, a candidate gene HubHLH159 was obtained, and the real-time quantitative PCR analysis confirmed that HubHLH159 showed a high expression level in 'Guanhuahong' pitaya (red-pulp) at mature stage, indicating its role in betalain biosynthesis. HubHLH159 is a Group II protein and contains a bHLH domain. It is a nuclear protein with transcriptional activation activity. Dual luciferase reporter assays and virus-induced gene silencing (VIGS) experiments showed that HubHLH159 promotes betalain biosynthesis by activating the expression of HuADH1, HuCYP76AD1-1, and HuDODA1. The results of the present study lay a new theoretical reference for the regulation of pitaya betalain biosynthesis and also provides as essential basis for the future analysis of the functions of HubHLH gene family.


Subject(s)
Betalains , Transcriptome , Phylogeny , Betalains/metabolism , Synteny , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Int J Mol Sci ; 23(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36142481

ABSTRACT

The WRKY gene family is a plant-specific transcription factor (TF) that regulates many physiological processes and (a) biotic stress responses. Despite this, little is known about the molecular properties and roles of WRKY TFs in pitaya betalain biosynthesis. Here we report the identification of 70 WRKY in Hylocereus undatus, their gene structure, locations on each chromosome, systematic phylogenetic analysis, conserved motif analysis, and synteny of HuWRKY genes. HmoWRKY42 is a Group IIb WRKY protein and contains a coiled-coil motif, a WRKY domain and a C2H2 zinc-finger motif (CX5CX23HXH). Results from yeast one-hybrid and transient dual-luciferase assays showed that HmoWRKY42 was a transcriptional repressor and could repress HmocDOPA5GT1 expression by binding to its promoter. Yeast two-hybrid assays showed that HmoWRKY42 could interact with itself to form homodimers. Knocking out the coiled-coil motif of HmoWRKY42 prevented its self-interaction and prevented it from binding to the HmocDOPA5GT1 promoter. Knocking out the WRKY domain and C2H2 zinc-finger motif sequence of HmoWRKY42 also prevented it from binding to the HmocDOPA5GT1 promoter. The coiled-coil motif, the WRKY domain and the C2H2 zinc finger motif are key motifs for the binding of HmoWRKY42 to the HmocDOPA5GT1 promoter. HmoWRKY42 is localized in the nucleus and possesses trans-activation ability responsible for pitaya betalain biosynthesis by repressing the transcription of HmocDOPA5GT1. As far as we know, no reports are available on the role of HmoWRKY42 in pitaya betalain biosynthesis. The results provide an important foundation for future analyses of the regulation and functions of the HuWRKY gene family.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Betalains , Phylogeny , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/metabolism , Zinc/metabolism
9.
Genes (Basel) ; 13(5)2022 04 24.
Article in English | MEDLINE | ID: mdl-35627130

ABSTRACT

Pitaya (Selenicereus) is a kind of novel fruit with a delicious taste and superior horticulture ornamental value. The potential economic impact of the pitaya lies in its diverse uses not only as agricultural produce and processed foods but also in industrial and medicinal products. It is also an excellent plant material for basic and applied biological research. A comprehensive database of pitaya would facilitate studies of pitaya and the other Cactaceae plant species. Here, we constructed pitaya genome and multiomics database, which is a collection of the most updated and high-quality pitaya genomic assemblies. The database contains various information such as genomic variation, gene expression, miRNA profiles, metabolite and proteomic data from various tissues and fruit developmental stages of different pitaya cultivars. In PGMD, we also uploaded videos on the flowering process and planting tutorials for practical usage of pitaya. Overall, these valuable data provided in the PGMD will significantly facilitate future studies on population genetics, molecular breeding and function research of pitaya.


Subject(s)
Cactaceae , Proteomics , Cactaceae/genetics , Cactaceae/metabolism , Fruit/genetics , Fruit/metabolism , Genomics
10.
Plants (Basel) ; 11(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35270164

ABSTRACT

Sugar and organic acids are important factors determining pitaya fruit quality. However, changes in sugars and acids, and expressions of metabolism-associated genes during fruit maturation of yellow-peel pitayas are not well-documented. In this study, metabolic and expression analyses in pulps of different fruit developmental stages of 'Wucihuanglong' ('WCHL', Hylocereus undatus) and 'Youcihuanglong' pitaya ('YCHL', Hylocereus megalanthus) were used to explore the sugar and organic acid metabolic process. Total phenols and flavonoids were mainly accumulated at S1 in pitaya pulps. Ascorbic acid contents of 'WCHL' pitaya were higher than that of 'YCHL' pitaya during fruit maturation. Starch was mainly accumulated at early fruit development stages while soluble sugars were rich in late stages. Sucrose, fructose, and glucose were the main sugar components of 'YCHL' pitaya while glucose was dominant in 'WCHL' pitaya. Malic and citric acids were the main organic acids in 'WCHL' and 'YCHL' pitayas, respectively. Based on the transcriptome analyses, 118 genes involved in pitaya sugar and organic acid metabolism were obtained. Results from the correlation analyses between the expression profiling of candidate genes and the contents of sugar and organic acid showed that 51 genes had a significant correlation relationship and probably perform key role in pitaya sugar and organic acid metabolism processes. The finding of the present study provides new information for quality regulation of pitayas.

11.
Genes (Basel) ; 12(12)2021 11 23.
Article in English | MEDLINE | ID: mdl-34946807

ABSTRACT

Betalains are water-soluble nitrogen-containing pigments with multiple bioactivities. Pitayas are the only at large-scale commercially grown fruit containing abundant betalains for consumers. Currently, the key genes involved in betalain biosynthesis remain to be fully elucidated. Moreover, genome-wide analyses of these genes in betalain biosynthesis are not available in betalain-producing plant species. In this study, totally 53 genes related to betalain biosynthesis were identified from the genome data of Hylocereus undatus. Four candidate genes i.e., one cytochrome P-450 R gene (HmoCYP76AD1), two L-DOPA 4,5-dioxygenase genes (HmoDODAα1 and HmoDODAα2), and one cyclo-DOPA 5-O glucosyltransferase gene (HmocDOPA5GT) were initially screened according to bioinformatics and qRT-PCR analyses. Silencing HmoCYP76AD1, HmoDODAα1, HmoDODAα2 or HmocDOPA5GT resulted in loss of red pigment. HmoDODAα1 displayed a high level of L-DOPA 4,5-dioxygenase activity to produce betalamic acid and formed yellow betaxanthin. Co-expression of HmoCYP76AD1, HmoDODAα1 and HmocDOPA5GT in Nicotiana benthamiana and yeast resulted in high abundance of betalain pigments with a red color. These results suggested that HmoCYP76AD1, HmoDODAα1, and HmocDOPA5GT play key roles in betalain biosynthesis in Hylocereus. The results of the present study provide novel genes for molecular breeding programs of pitaya.


Subject(s)
Betalains/biosynthesis , Cactaceae/genetics , Cactaceae/metabolism , Genes, Plant/genetics , Fruit/genetics , Gene Expression Regulation, Plant/genetics , Genome-Wide Association Study/methods , Pigmentation/genetics , Pyridines
12.
Cells ; 10(8)2021 07 31.
Article in English | MEDLINE | ID: mdl-34440718

ABSTRACT

The MYB (myeloblastosis) superfamily constitutes one of the most abundant transcription factors (TFs) regulating various biological processes in plants. However, the molecular characteristics and functions of MYB TFs in pitaya remain unclear. To date, no genome-wide characterization analysis of this gene family has been conducted in the Cactaceae species. In this study, 105 R2R3-MYB members were identified from the genome data of Hylocereus undatus and their conserved motifs, physiological and biochemical characteristics, chromosome locations, synteny relationship, gene structure and phylogeny were further analyzed. Expression analyses suggested that three up-regulated HuMYBs and twenty-two down-regulated HuMYBs were probably involved in fruit ripening of pitaya. Phylogenetic analyses of R2R3-MYB repressors showed that seven HuMYBs (HuMYB1, HuMYB21, HuMYB48, HuMYB49, HuMYB72, HuMYB78 and HuMYB101) were in clades containing R2R3-MYB repressors. HuMYB1 and HuMYB21 were significantly down-regulated with the betalain accumulation during fruit ripening of 'Guanhuahong' pitaya (H. monacanthus). However, only HuMYB1 had R2 and R3 repeats with C1, C2, C3 and C4 motifs. HuMYB1 was localized exclusively to the nucleus and exhibited transcriptional inhibition capacities. Dual luciferase reporter assay demonstrated that HuMYB1 inhibited the expression of betalain-related genes: HuADH1, HuCYP76AD1-1 and HuDODA1. These results suggested that HuMYB1 is a potential repressor of betalain biosynthesis during pitaya fruit ripening. Our results provide the first genome-wide analyses of the R2R3-MYB subfamily involved in pitaya betalain biosynthesis and will facilitate functional analysis of this gene family in the future.


Subject(s)
Betalains/biosynthesis , Cactaceae/metabolism , Fruit/metabolism , Genome, Plant , Plant Proteins/metabolism , Transcription Factors/metabolism , Amino Acid Motifs , Cactaceae/genetics , Fruit/genetics , Gene Expression Regulation, Plant , Genome-Wide Association Study , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Transcription Factors/chemistry , Transcription Factors/genetics
13.
Int J Mol Sci ; 22(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34299311

ABSTRACT

Aquaporins (AQPs) are essential membrane proteins involved in seed maturation and germination, stomata movement, photosynthesis, and regulation of plant flowering processes. Pitaya flowers are open at night and wither at daybreak, which shows an obvious circadian rhythm. In this study, a comprehensive genome-wide analysis of AQPs in Hylocereus undantus was conducted to screen key genes associated with flowering processes. A total of 33 HuAQP genes were identified from the H. undantus genome. The 33 HuAQPs were grouped into four subfamilies: 10 PIPs, 13 TIPs, 8 NIPs, and 2 SIPs, which were distributed on 9 out of 11 pitaya chromosomes (Chr) (except for Chr7 and Chr10). Results from expression profiles showed that HuNIP6;1 may be involved in pitaya's floral opening. HuNIP6;1 was localized exclusively in the cell membrane. Overexpression of HuNIP6;1 in Arabidopsis thaliana significantly promoted early flowering through regulating negative flowering regulators of MJM30, COL9, and PRR5, suggesting that HuNIP6;1 plays key roles in regulating flowering time. The present study provides the first genome-wide analysis of the AQP gene family in pitaya and valuable information for utilization of HuAQPs.


Subject(s)
Aquaporins/genetics , Cactaceae/genetics , Genes, Plant , Plant Proteins/genetics , Amino Acid Sequence , Aquaporins/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Cactaceae/growth & development , Cactaceae/metabolism , Chromosome Mapping , Circadian Rhythm , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Phylogeny , Plant Proteins/metabolism , Plants, Genetically Modified
14.
Hortic Res ; 8(1): 164, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34230458

ABSTRACT

Pitaya (Hylocereus) is the most economically important fleshy-fruited tree of the Cactaceae family that is grown worldwide, and it has attracted significant attention because of its betalain-abundant fruits. Nonetheless, the lack of a pitaya reference genome significantly hinders studies focused on its evolution, as well as the potential for genetic improvement of this crop. Herein, we employed various sequencing approaches, namely, PacBio-SMRT, Illumina HiSeq paired-end, 10× Genomics, and Hi-C (high-throughput chromosome conformation capture) to provide a chromosome-level genomic assembly of 'GHB' pitaya (H. undatus, 2n = 2x = 22 chromosomes). The size of the assembled pitaya genome was 1.41 Gb, with a scaffold N50 of ~127.15 Mb. In total, 27,753 protein-coding genes and 896.31 Mb of repetitive sequences in the H. undatus genome were annotated. Pitaya has undergone a WGT (whole-genome triplication), and a recent WGD (whole-genome duplication) occurred after the gamma event, which is common to the other species in Cactaceae. A total of 29,328 intact LTR-RTs (~696.45 Mb) were obtained in H. undatus, of which two significantly expanded lineages, Ty1/copia and Ty3/gypsy, were the main drivers of the expanded genome. A high-density genetic map of F1 hybrid populations of 'GHB' × 'Dahong' pitayas (H. monacanthus) and their parents were constructed, and a total of 20,872 bin markers were identified (56,380 SNPs) for 11 linkage groups. More importantly, through transcriptomic and WGCNA (weighted gene coexpression network analysis), a global view of the gene regulatory network, including structural genes and the transcription factors involved in pitaya fruit betalain biosynthesis, was presented. Our data present a valuable resource for facilitating molecular breeding programs of pitaya and shed novel light on its genomic evolution, as well as the modulation of betalain biosynthesis in edible fruits.

15.
Int J Mol Sci ; 22(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671670

ABSTRACT

Betalains are water-soluble nitrogen-containing pigments with multiple bioactivities. Pitaya is the only large-scale commercially grown fruit containing abundant betalains for consumers. However, the upstream regulators in betalain biosynthesis are still not clear. In this study, HmoWRKY40, a novel WRKY transcription factor, was obtained from the transcriptome data of pitaya (Hylocereus monacanthus). HmoWRKY40 is a member of the Group IIa WRKY family, containing a conserved WRKY motif, and it is located in the nucleus. The betalain contents and expression levels of HmoWRKY40 increased rapidly during the coloration of pitaya and reached their maximums on the 23rd day after artificial pollination (DAAP). Yeast one-hybrid and transient expression assays showed that HmoWRKY40 could bind and activate the promoter of HmoCYP76AD1. Silencing the HmoWRKY40 gene resulted in a significant reduction of betacyanin contents. These results indicate that HmoWRKY40 transcriptionally activates HmoCYP76AD, which is involved in the regulation of pitaya betalain biosynthesis. The results of the present study provide new regulatory networks related to betalain biosynthesis in pitaya.


Subject(s)
Betalains/biosynthesis , Cactaceae/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Cactaceae/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cloning, Molecular , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Gene Silencing , Pigmentation , Plant Proteins/genetics , Promoter Regions, Genetic , Transcription Factors/genetics , Yeasts/genetics
16.
BMC Plant Biol ; 20(1): 437, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32962650

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) and their regulatory functions in anthocyanin, carotenoid, and chlorophyll accumulation have been extensively characterized in many plant species. However, the miRNA regulatory mechanism in betalain biosynthesis remains mostly unknown. RESULTS: In this study, 126 conserved miRNAs and 41 novel miRNAs were first isolated from Hylocereus monacanthus, among which 95 conserved miRNAs belonged to 53 miRNA families. Thirty-four candidate miRNAs related to betalain biosynthesis were differentially expressed. The expression patterns of those differential expressed miRNAs were analyzed in various pitaya tissues by RT-qPCR. A significantly negative correlation was detected between the expression levels of half those miRNAs and corresponding target genes. Target genes of miRNAs i.e. Hmo-miR157b-HmSPL6-like, Hmo-miR160a-Hpcyt P450-like3, Hmo-miR6020-HmCYP71A8-like, Hmo-novel-2-HmCYP83B1-like, Hmo-novel-15-HmTPST-like, Hmo-miR828a-HmTT2-like, Hmo-miR858-HmMYB12-like, Hmo-miR858-HmMYBC1-like and Hmo-miR858-HmMYB2-like were verified by 5'RACE and transient expression system in tobacco. CONCLUSIONS: Hmo-miR157b, Hmo-miR160a, Hmo-miR6020 Hmo-novel-2, Hmo-novel-15, Hmo-miR828a and Hmo-miR858 play important roles in pitaya fruit coloration and betalain accumulation. Our findings provide new insights into the roles of miRNAs and their target genes of regulatory functions involved in betalain biosynthesis of pitaya.


Subject(s)
Betalains/biosynthesis , Cactaceae/genetics , MicroRNAs/genetics , RNA, Plant/genetics , Cactaceae/metabolism , Real-Time Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, RNA , Transcriptome/genetics
17.
Plant Physiol Biochem ; 152: 112-124, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32413806

ABSTRACT

Pitaya (Hylocereus spp.) is the only commercial cultivation of fruit containing abundant betalains for consumer. Betalains are water-soluble nitrogen-containing pigments with high nutritional value and bioactivities. In this study, contents of betaxanthins and betacyanins were compared between 'Guanhuabai' (H. undatus) and 'Huanglong' (H. megalanthus) pitayas and key genes involved in betalain biosynthesis were screened from 'Huanglong' pitaya by RNA-Seq technology. Twenty-nine candidate genes related to betalain biosynthesis were obtained from the transcriptome data. Based on expression characteristics and sequence analyses, HmB5GT1 and HmHCGT2 were further analyzed. HmB5GT1 and HmHCGT2 were both conserved in 'PSPG-box' and localized in nucleus. Silencing of HmB5GT1 and HmHCGT2 resulted in a significant reduction in betacyanin and betaxanthin contents. Those results suggested that HmB5GT1 and HmHCGT2 are possibly involved in betalain biosynthesis in H. megalanthus. The present work provides new information on betalain biosynthesis in Hylocereus at the transcriptional level.

18.
Plant Methods ; 15: 70, 2019.
Article in English | MEDLINE | ID: mdl-31333756

ABSTRACT

BACKGROUND: A suitable reference gene is an important prerequisite for guarantying accurate and reliable results in quantitative real-time PCR (qRT-PCR) analyses. However, there is no absolute universality in reference genes among different species. It's hard to find an ideal reference gene to fit for different tissues and growth periods. Pitaya (Hylocereus) is commercially produced as a new fruit crop at a large scale in tropical and subtropical regions. To date, there is no report on the identification of the most reliable reference genes for qRT-PCR normalization in pitaya. RESULTS: In this study, six candidate reference genes i.e. Actin(1), GAPDH, UBC(1), UBC(2) EF1-α(1) and histone(1) were selected from thirty-nine typical candidate reference genes to determine the most stable reference genes for qRT-PCR normalization in different tissues, temperature stresses and fruit developmental stages of pitaya. Among the six candidate reference genes, Actin(1) and EF1-α(1) were the most stable gene according to calculations of three statistical methods (GeNorm, NormFinder and BestKeeper) while UBC(1) and UBC(2) showed the lowest expression stability. The six candidate reference genes were further validated by comparing expression profiles of key genes related to betalain biosynthesis at flesh coloration stages of Guanhuahong (Hylocereus monacanthus) and Guanhuabai (H. undatus) pitayas. Actin(1) was recommended the best reference gene for accurate normalization of qRT-PCR data. CONCLUSIONS: In this study, the stability of the selected reference genes for normalizing the qRT-PCR data were identified from pitaya. Actin(1) was the most stably expressed genes in different tissues and fruit developmental stages in pitaya. The present work provides the first data of reference gene identification for pitaya and will facilitate further studies in molecular biology and gene function on Hylocereus and other closely related species.

19.
Plant Physiol Biochem ; 126: 117-125, 2018 May.
Article in English | MEDLINE | ID: mdl-29522973

ABSTRACT

Pitaya is a new fruit crop, whose exotically colored fruits have excellent nutritional and antioxidant properties. In this study, the primary metabolite profiles of three pitaya cultivars i.e. 'Guanhuahong' (red peel with red pulp), 'Guanhuabai' (red peel with white pulp) and 'Guanhuahongfen' (red peel with pink pulp) were investigated using GC-MS and Ultraviolet-visible spectroscopy. In the fruit pulp, levels of starch, organic acids, and inositol decreased as the fruit matured. Glucose, fructose, sucrose and sorbitol contents increased gradually during fruit maturation and reached their highest levels in the pulp at the mature stage. Citramalic acid was identified for the first time in the pulp of Hylocereus species. Higher levels of total phenols, flavonoids and antioxidant activities were detected in the peel than in the pulp during fruit maturation of all three cultivars. The finding of higher levels of total phenols and flavonoids in the pitaya peel than in the pulp at the mature stage suggests that pitaya peels are a good source of natural phenols and flavonoids.


Subject(s)
Cactaceae/metabolism , Flavonoids/metabolism , Fruit/metabolism , Phenols/metabolism , Pigmentation/physiology
20.
Int J Mol Sci ; 17(10)2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27690004

ABSTRACT

Red dragon fruit or red pitaya (Hylocereus polyrhizus) is the only edible fruit that contains betalains. The color of betalains ranges from red and violet to yellow in plants. Betalains may also serve as an important component of health-promoting and disease-preventing functional food. Currently, the biosynthetic and regulatory pathways for betalain production remain to be fully deciphered. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analyses were used to reveal the molecular mechanism of betalain biosynthesis in H. polyrhizus fruits at white and red pulp stages, respectively. A total of 1946 proteins were identified as the differentially expressed between the two samples, and 936 of them were significantly highly expressed at the red pulp stage of H. polyrhizus. RNA-seq and iTRAQ analyses showed that some transcripts and proteins were positively correlated; they belonged to "phenylpropanoid biosynthesis", "tyrosine metabolism", "flavonoid biosynthesis", "ascorbate and aldarate metabolism", "betalains biosynthesis" and "anthocyanin biosynthesis". In betalains biosynthesis pathway, several proteins/enzymes such as polyphenol oxidase, CYP76AD3 and 4,5-dihydroxy-phenylalanine (DOPA) dioxygenase extradiol-like protein were identified. The present study provides a new insight into the molecular mechanism of the betalain biosynthesis at the posttranscriptional level.

SELECTION OF CITATIONS
SEARCH DETAIL
...