Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
1.
J Neuroinflammation ; 21(1): 99, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632655

ABSTRACT

BACKGROUND: The pathogenesis of memory impairment, a common complication of chronic neuropathic pain (CNP), has not been fully elucidated. Schwann cell (SC)-derived extracellular vesicles (EVs) contribute to remote organ injury. Here, we showed that SC-EVs may mediate pathological communication between SCs and hippocampal neurons in the context of CNP. METHODS: We used an adeno-associated virus harboring the SC-specific promoter Mpz and expressing the CD63-GFP gene to track SC-EVs transport. microRNA (miRNA) expression profiles of EVs and gain-of-function and loss-of-function regulatory experiments revealed that miR-142-5p was the main cargo of SC-EVs. Next, luciferase reporter gene and phenotyping experiments confirmed the direct targets of miR-142-5p. RESULTS: The contents and granule sizes of plasma EVs were significantly greater in rats with chronic sciatic nerve constriction injury (CCI)than in sham rats. Administration of the EV biogenesis inhibitor GW4869 ameliorated memory impairment in CCI rats and reversed CCI-associated dendritic spine damage. Notably, during CCI stress, SC-EVs could be transferred into the brain through the circulation and accumulate in the hippocampal CA1-CA3 regions. miR-142-5p was the main cargo wrapped in SC-EVs and mediated the development of CCI-associated memory impairment. Furthermore, α-actinin-4 (ACTN4), ELAV-like protein 4 (ELAVL4) and ubiquitin-specific peptidase 9 X-linked (USP9X) were demonstrated to be important downstream target genes for miR-142-5p-mediated regulation of dendritic spine damage in hippocampal neurons from CCI rats. CONCLUSION: Together, these findings suggest that SCs-EVs and/or their cargo miR-142-5p may be potential therapeutic targets for memory impairment associated with CNP.


Subject(s)
Extracellular Vesicles , MicroRNAs , Neuralgia , Rats , Animals , MicroRNAs/metabolism , Neuralgia/metabolism , Neurons/metabolism , Schwann Cells/metabolism , Extracellular Vesicles/metabolism
2.
Front Nutr ; 11: 1358231, 2024.
Article in English | MEDLINE | ID: mdl-38646107

ABSTRACT

Background: Oxidative Balance Score (OBS) is a tool for assessing the oxidative stress-related exposures of diet and lifestyle. The study aimed to investigate the association between OBS and low muscle mass. Methods: Overall, 6,307 individuals over the age of 18 were assessed using data from the 2011 to 2018 National Health and Nutrition Examination Survey (NHANES). Weighted logistic regression and models were used, together with adjusted models. Results: There was a negative relationship between OBS and low muscle mass [odds ratio (OR): 0.96, 95% confidence interval (CI): 0.94-0.97, p< 0.0001] using the first OBS level as reference. The values (all 95% CI) were 0.745 (0.527-1.054) for the second level, 0.650 (0.456-0.927) for the third level, and 0.326 (0.206-0.514) for the fourth level (P for trend <0.0001). Independent links with low muscle mass were found for diet and lifestyle factors. A restricted cubic spline model indicated a non-linear association between OBS and low muscle mass risk (P for non-linearity<0.05). In addition, the inflection points of the nonlinear curves for the relationship between OBS and risk of low muscle mass were 20. Conclusion: OBS and low muscle mass were found to be significantly negatively correlated. By modulating oxidative balance, a healthy lifestyle and antioxidant rich diet could be a preventive strategy for low muscle mass.

3.
Int Urol Nephrol ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436825

ABSTRACT

PURPOSE: The objective of this study is to investigate the associated risk factors of pulmonary infection in individuals diagnosed with chronic kidney disease (CKD). The primary goal is to develop a predictive model that can anticipate the likelihood of pulmonary infection during hospitalization among CKD patients. METHODS: This retrospective cohort study was conducted at two prominent tertiary teaching hospitals. Three distinct models were formulated employing three different approaches: (1) the statistics-driven model, (2) the clinical knowledge-driven model, and (3) the decision tree model. The simplest and most efficient model was obtained by comparing their predictive power, stability, and practicability. RESULTS: This study involved a total of 971 patients, with 388 individuals comprising the modeling group and 583 individuals comprising the validation group. Three different models, namely Models A, B, and C, were utilized, resulting in the identification of seven, four, and eleven predictors, respectively. Ultimately, a statistical knowledge-driven model was selected, which exhibited a C-statistic of 0.891 (0.855-0.927) and a Brier score of 0.012. Furthermore, the Hosmer-Lemeshow test indicated that the model demonstrated good calibration. Additionally, Model A displayed a satisfactory C-statistic of 0.883 (0.856-0.911) during external validation. The statistical-driven model, known as the A-C2GH2S risk score (which incorporates factors such as albumin, C2 [previous COPD history, blood calcium], random venous blood glucose, H2 [hemoglobin, high-density lipoprotein], and smoking), was utilized to determine the risk score for the incidence rate of lung infection in patients with CKD. The findings revealed a gradual increase in the occurrence of pulmonary infections, ranging from 1.84% for individuals with an A-C2GH2S Risk Score ≤ 6, to 93.96% for those with an A-C2GH2S Risk Score ≥ 18.5. CONCLUSION: A predictive model comprising seven predictors was developed to forecast pulmonary infection in patients with CKD. This model is characterized by its simplicity, practicality, and it also has good specificity and sensitivity after verification.

4.
BMC Geriatr ; 24(1): 268, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504183

ABSTRACT

BACKGROUND: Frail elderly patients experience physiological function and reserve depletion, leading to imbalances in their internal environment, which increases the risk of coronary heart disease recurrence and malnutrition. However, the majority of these patients, who primarily have a low level of education and lack self-management skills, face difficulties actively dealing with obstacles during the transition period after their discharge from hospitalization. Therefore, it is necessary to understand and discuss in depth the nutrition management experience of discharged elderly patients with coronary heart disease and frailty (ages 65-80 years old) and to analyze the promoting and hindering factors that affect scientific diet behavior during the discharge transition period. METHODS: Fifteen elderly patients with coronary heart disease and frailty who had been discharged from the hospital for 6 months were interviewed using a semistructured method. The directed content analysis approach to descriptive research was used to extract topics from the interview content. RESULTS: All participants discussed the problems in health nutrition management experience of discharged. Five topics and ten subtopics were extracted, such as ①Weak perceptions and behaviors towards healthy eating (personal habit solidification, negative attitudes towards nutrition management), ②Lack of objective factors for independently adjusting dietary conditions (reliance on subjective feelings, times of appetite change), ③Personal hindrance factors (memory impairment, deficiencies in self-nutrition management), ④Expected external support (assistance care support, ways to obtain nutritional information), ⑤Lack of continuous nutrition management (interruption of professional guidance, avoidance of medical treatment behavior). CONCLUSIONS: Nutrition management after discharge places a burden on elderly patients with coronary heart disease and frailty. According to the patients' physical conditions, we should develop a diet support system that is coordinated by individuals, families and society.


Subject(s)
Coronary Disease , Frailty , Humans , Aged , Aged, 80 and over , Frailty/diagnosis , Frailty/epidemiology , Frailty/therapy , Patient Discharge , Aftercare , Nutritional Status , Frail Elderly , Coronary Disease/complications , Coronary Disease/epidemiology , Coronary Disease/therapy
5.
Heliyon ; 10(5): e26983, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38444477

ABSTRACT

Background: Dexmedetomidine is known for its selective action on α2-adrenoceptor sites and is recognized for its neuroprotective capabilities. It can improve postoperative cognitive function. Commonly used anesthetics, such as sevoflurane and propofol, have been reported to affect postoperative cognitive function. Therefore, it could be valuable to explore dexmedetomidine-led anesthesia strategy. This study was designed to assess the performance, safety, and effective infusion rate in anesthesia maintenance, to explore a feasible dexmedetomidine-led anesthesia maintenance protocol, and to provide a foundation for potential combined anesthesia. Methods: Thirty patients aged 18-60 years, classified as ASA I or II, undergoing abdominal surgery were involved. The anesthesia maintenance was achieved with dexmedetomidine, remifentanil and rocuronium. Dixon up-and-down sequential methodology was utilized to ascertain the ED50 of dexmedetomidine for maintaining Patient State Index (PSI) 25-40 (depth of stage III anesthesia). Intraoperative HR, BP and depth of anesthesia were monitored and controlled. The wake-up time from anesthesia, the incidence of intraoperative awareness and postoperative delirium, and the patients' satisfaction were assessed. Results: The results indicated that dexmedetomidine-led anesthesia could maintain the depth of stage III anesthesia during abdominal surgery. The ED50 and ED95 of dexmedetomidine infusion rates during anesthesia maintenance were 2.298 µg/kg·h (95%CI: 2.190-2.404 µg/kg·h) and 3.765 µg/kg·h (95%CI: 3.550-4.050 µg/kg·h). Continuous infusion of dexmedetomidine and 0.1-0.3 µg/kg·min remifentanil could maintain PSI 25-40, and provide appropriate anesthesia depth for abdominal surgery. Perioperative bradycardia and hypertension could be rapidly corrected with atropine and nitroglycerin. The median wake-up time after anesthesia was 4.8 min, the perioperative maximum HR had significant correlation with wake-up time and intraoperative dexmedetomidine dose. No intraoperative awareness and postoperative delirium occurred; the patients were satisfied with dexmedetomidine-led anesthesia. Conclusions: dexmedetomidine-led strategy could maintain stable depth of anesthesia throughout surgery, and the ED50 of dexmedetomidine infusion rates was 2.298 µg/kg·h. Intraoperative HR, BP and depth of anesthesia require monitoring, the bradycardia and hypertension could be rapidly corrected.

6.
Adv Sci (Weinh) ; 11(16): e2303775, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38327094

ABSTRACT

The spread of prion-like protein aggregates is a common driver of pathogenesis in various neurodegenerative diseases, including Alzheimer's disease (AD) and related Tauopathies. Tau pathologies exhibit a clear progressive spreading pattern that correlates with disease severity. Clinical observation combined with complementary experimental studies has shown that Tau preformed fibrils (PFF) are prion-like seeds that propagate pathology by entering cells and templating misfolding and aggregation of endogenous Tau. While several cell surface receptors of Tau are known, they are not specific to the fibrillar form of Tau. Moreover, the underlying cellular mechanisms of Tau PFF spreading remain poorly understood. Here, it is shown that the lymphocyte-activation gene 3 (Lag3) is a cell surface receptor that binds to PFF but not the monomer of Tau. Deletion of Lag3 or inhibition of Lag3 in primary cortical neurons significantly reduces the internalization of Tau PFF and subsequent Tau propagation and neuron-to-neuron transmission. Propagation of Tau pathology and behavioral deficits induced by injection of Tau PFF in the hippocampus and overlying cortex are attenuated in mice lacking Lag3 selectively in neurons. These results identify neuronal Lag3 as a receptor of pathologic Tau in the brain,and for AD and related Tauopathies, a therapeutic target.


Subject(s)
Lymphocyte Activation Gene 3 Protein , Neurons , Tauopathies , tau Proteins , Animals , Humans , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Antigens, CD/metabolism , Antigens, CD/genetics , Disease Models, Animal , Neurons/metabolism , tau Proteins/metabolism , tau Proteins/genetics , Tauopathies/metabolism , Tauopathies/genetics , Tauopathies/pathology
8.
J Alzheimers Dis ; 97(4): 1545-1570, 2024.
Article in English | MEDLINE | ID: mdl-38277294

ABSTRACT

Coronary artery disease is a prevalent ischemic disease that results in insufficient blood supply to the heart muscle due to narrowing or occlusion of the coronary arteries. Various reperfusion strategies, including pharmacological thrombolysis and percutaneous coronary intervention, have been developed to enhance blood flow restoration. However, these interventions can lead to myocardial ischemia/reperfusion injury (MI/RI), which can cause unpredictable complications. Recent research has highlighted a compelling association between MI/RI and cognitive function, revealing pathophysiological mechanisms that may explain altered brain cognition. Manifestations in the brain following MI/RI exhibit pathological features resembling those observed in Alzheimer's disease (AD), implying a potential link between MI/RI and the development of AD. The pro-inflammatory state following MI/RI may induce neuroinflammation via systemic inflammation, while impaired cardiac function can result in cerebral under-perfusion. This review delves into the role of extracellular vesicles in transporting deleterious substances from the heart to the brain during conditions of MI/RI, potentially contributing to impaired cognition. Addressing the cognitive consequence of MI/RI, the review also emphasizes potential neuroprotective interventions and pharmacological treatments within the MI/RI model. In conclusion, the review underscores the significant impact of MI/RI on cognitive function, summarizes potential mechanisms of cardio-cerebral communication in the context of MI/RI, and offers ideas and insights for the prevention and treatment of cognitive dysfunction following MI/RI.


Subject(s)
Cognitive Dysfunction , Coronary Artery Disease , Myocardial Ischemia , Myocardial Reperfusion Injury , Humans , Myocardial Reperfusion Injury/pathology , Reperfusion , Communication , Cognitive Dysfunction/etiology
10.
ACS Appl Mater Interfaces ; 16(5): 5522-5535, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38266749

ABSTRACT

Multidrug-resistant (MDR) pathogens pose a serious threat to the health and life of humans, necessitating the development of new antimicrobial agents. Herein, we develop and characterize a panel of nine amino acid peptides with a cation end motif. Bioactivity analysis revealed that the short peptide containing "RWWWR" as a central motif harboring mirror structure "KXR" unit displayed not only high activity against MDR planktonic bacteria but also a clearance rate of 92.33% ± 0.58% against mature biofilm. Mechanically, the target peptide (KLR) killed pathogens by excessively accumulating reactive oxygen species and physically disrupting membranes, thereby enhancing its robustness for controlling drug resistance. In the animal model of sepsis infection by MDR bacteria, the peptide KLR exhibited strong therapeutic effects. Collectively, this study provided the dominant structure of short antimicrobial peptides (AMPs) to replenish our arsenals for combating bacterial infections and illustrated what could be harnessed as a new agent for fighting MDR bacteria.


Subject(s)
Anti-Infective Agents , Bacterial Infections , Humans , Animals , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Drug Resistance, Multiple, Bacterial , Anti-Infective Agents/pharmacology , Bacterial Infections/drug therapy , Microbial Sensitivity Tests , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
11.
Mol Neurobiol ; 61(3): 1818-1832, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37782443

ABSTRACT

Perioperative neurocognitive disorders (PNDs) are severe and common neurological complications among elderly patients following anesthesia and surgery. As the first line of defense of the innate immune system, Toll-like receptors (TLRs) have been found to be involved in the occurrence of neurodegenerative diseases in recent years. However, the role of TLR7 in the pathology and development of PNDs remains largely unclear. In our current study, we hypothesized that increased microRNA let-7b (let-7b) during anesthesia and surgical operation would activate TLR7 signaling pathways and mediate PNDs. Using a mouse model of PNDs, 18-20 months wild-type (WT) mice were undergoing unilateral nephrectomy, and increased TLR7 and let-7b expression levels were found in the surgery group compared with the Sham group. Of note, increased TLR7 was found to be co-localized with let-7b in the hippocampal area CA1 in the PNDs model. In addition, TLR7 and let-7b inhibition could improve hippocampus-dependent memory and attenuate the production of inflammatory cytokines. Together, our results indicated that TLR7 activation and up-regulation might be triggered by increased let-7b under stressful conditions and initiated the downstream inflammatory signaling, playing a substantial role in the development of PNDs.


Subject(s)
Anesthesia , Cognitive Dysfunction , MicroRNAs , Humans , Animals , Mice , Aged , Toll-Like Receptor 7/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/physiology
12.
J Pain Symptom Manage ; 67(1): 50-58, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37742793

ABSTRACT

CONTEXT: Hydromorphone and morphine are the common drugs used for the treatment of moderate to severe cancer pain. Patient controlled subcutaneous analgesia (PCSA) is an effective technique to manage cancer pain. However, few studies have been conducted to show the efficacy and safety of PCSA of hydromorphone for the relief of cancer pain. OBJECTIVES: To explore the short-term efficacy and safety of PCSA elicited by hydromorphone for moderate to severe cancer pain. METHODS: This was a single-center, randomized, active-controlled, double-blind trial (from April 2019 to August 2021). Sixty patients with moderate to severe cancer pain were randomized (1:1) to hydromorphone or morphine groups according to drug delivery by PCSA. The primary outcome was the pain intensity measured by a numerical rating scale (NRS) at 72 hours. Secondary outcomes included pain intensity measured by NRS at baseline, 15 minutes, 30 minutes, two hours, eight hours, 24 hours and 48 hours. The daily occurrence of breakthrough pain (BTP), impact of pain on quality of life measured by the brief pain inventory (BPI), the daily additional consumption of opioids and the incidence of adverse events were also recorded. Adverse events included nausea, vomiting, dizziness, constipation and respiratory depression. RESULTS: A total of 57 patients (28 patients in the hydromorphone group and 29 patients in the morphine group) in the West China Hospital of Sichuan University were investigated. The mean (standard deviation [SD]) NRS in the two groups at baseline was 7.8 (1.7) in the hydromorphone group and 7.6 (1.7) in the morphine group, and at 72 hours were 3.4 (1.8) and 3.2 (1.5), respectively. The postoperative NRS in both groups was decreased significantly compared to baseline. The mean (SD) NRS at 30 minutes in the hydromorphone group was significantly lower than in the morphine group (3.9 [2.6] vs. 5.3 [2.1], P = 0.035). The daily occurrence of BTP in both groups at 48 hours and 72 hours decreased significantly compared to the corresponding baseline (P < 0.05), and there was no significant difference between the two groups. The total scores and sub-item scores of BPI at 24 hours and 72 hours after PCSA in both groups decreased significantly from baseline. A comparison of daily additional consumption of opioids between the two groups revealed no statistically significant difference. There were no significant differences in the incidences of nausea, vomiting, dizziness or constipation between the two groups (P > 0.05). CONCLUSION: This study found that the PCSA of both hydromorphone and morphine could effectively and safely relieve short-term moderate to severe cancer pain. Of note, the PCSA of hydromorphone took effect more quickly than that of morphine.


Subject(s)
Cancer Pain , Neoplasms , Humans , Hydromorphone/therapeutic use , Morphine , Cancer Pain/drug therapy , Cancer Pain/complications , Dizziness , Quality of Life , Pain/drug therapy , Analgesics, Opioid , Analgesia, Patient-Controlled , Vomiting , Nausea/drug therapy , Constipation/chemically induced , Double-Blind Method , Pain, Postoperative , Treatment Outcome , Neoplasms/complications , Neoplasms/drug therapy
13.
Org Biomol Chem ; 22(4): 745-752, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-37982316

ABSTRACT

Ligand 1, a rim-differentiated pillar[5]arene macrocycle modified with five naphthalimide groups through click chemistry, serves as an effective ratiometric fluorescent chemosensor for Cu2+. In contrast to the monomeric naphthalimide control compound 2, which shows only monomer emission, ligand 1 demonstrates dual emission characteristics encompassing both the monomer and excimer of the naphthalimide moieties. The binding properties of ligand 1 toward 15 different metal ions were systematically investigated in CH2Cl2/CH3CN (v/v, 1 : 1) by UV-vis and fluorescence spectroscopy. Remarkably, ligand 1 exhibits exceptional selectivity for Cu2+ ions. Upon complexation with Cu2+, the excimer emission of ligand 1 diminishes, concomitant with an enhancement of its monomer emission. The binding ratio for 1·Cu2+ was determined to be 1 : 1, with an association constant of (3.39 ± 0.40) × 105 M-1 calculated using a nonlinear least-squares curve-fitting method. Furthermore, the limit of detection (LOD) was found to be 185 ± 7 nM. Our results from 1H NMR titration, high-resolution mass spectrometry analysis and density functional theory calculations of 1·Cu2+ suggest synergistic coordination between Cu2+ and the triazole groups on ligand 1.

14.
Adv Sci (Weinh) ; 11(10): e2305554, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38143270

ABSTRACT

Acknowledging the neurological symptoms of COVID-19 and the long-lasting neurological damage even after the epidemic ends are common, necessitating ongoing vigilance. Initial investigations suggest that extracellular vesicles (EVs), which assist in the evasion of the host's immune response and achieve immune evasion in SARS-CoV-2 systemic spreading, contribute to the virus's attack on the central nervous system (CNS). The pro-inflammatory, pro-coagulant, and immunomodulatory properties of EVs contents may directly drive neuroinflammation and cerebral thrombosis in COVID-19. Additionally, EVs have attracted attention as potential candidates for targeted therapy in COVID-19 due to their innate homing properties, low immunogenicity, and ability to cross the blood-brain barrier (BBB) freely. Mesenchymal stromal/stem cell (MSCs) secreted EVs are widely applied and evaluated in patients with COVID-19 for their therapeutic effect, considering the limited antiviral treatment. This review summarizes the involvement of EVs in COVID-19 neuropathology as carriers of SARS-CoV-2 or other pathogenic contents, as predictors of COVID-19 neuropathology by transporting brain-derived substances, and as therapeutic agents by delivering biotherapeutic substances or drugs. Understanding the diverse roles of EVs in the neuropathological aspects of COVID-19 provides a comprehensive framework for developing, treating, and preventing central neuropathology and the severe consequences associated with the disease.


Subject(s)
COVID-19 , Extracellular Vesicles , Humans , SARS-CoV-2 , Brain , Blood-Brain Barrier
16.
Sci Adv ; 9(47): eadi1867, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37992175

ABSTRACT

Adaptation to low levels of oxygen (hypoxia) is a universal biological feature across metazoans. However, the unique mechanisms how different species sense oxygen deprivation remain unresolved. Here, we functionally characterize a novel long noncoding RNA (lncRNA), LOC105369301, which we termed hypoxia-induced lncRNA for polo-like kinase 1 (PLK1) stabilization (HILPS). HILPS exhibits appreciable basal expression exclusively in a wide variety of human normal and cancer cells and is robustly induced by hypoxia-inducible factor 1α (HIF1α). HILPS binds to PLK1 and sequesters it from proteasomal degradation. Stabilized PLK1 directly phosphorylates HIF1α and enhances its stability, constituting a positive feed-forward circuit that reinforces oxygen sensing by HIF1α. HILPS depletion triggers catastrophic adaptation defect during hypoxia in both normal and cancer cells. These findings introduce a mechanism that underlies the HIF1α identity deeply interconnected with PLK1 integrity and identify the HILPS-PLK1-HIF1α pathway as a unique oxygen-sensing axis in the regulation of human physiological and pathogenic processes.


Subject(s)
RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Oxygen , Signal Transduction , Hypoxia/genetics
17.
Expert Rev Anti Infect Ther ; 21(12): 1355-1364, 2023.
Article in English | MEDLINE | ID: mdl-37970631

ABSTRACT

INTRODUCTION: Tuberculosis (TB) is a chronic infectious disease caused by mycobacterium tuberculosis (Mtb) that poses a major threat to human health. AREAS COVERED: Herein, we aim to review the alteration of the microbiota in gut and respiratory during TB development, the potential function and mechanisms of microbiota in the pathogenesis of Mtb infection, and the impact of antibiotic treatment on the microbiota. In addition, we discuss the potential new paradigm for the use of microbiota-based treatments such as probiotics and prebiotics in the treatment of TB. EXPERT OPINION: Studies have shown that trillions of micro-organisms live in the human gut and respiratory tract, acting as gatekeepers in maintaining immune homeostasis and respiratory physiology and playing a beneficial or hostile role in the development of TB. Anti-TB antibiotics may cause microecological imbalances in the gut and respiratory tract, and microbiome-based therapeutics may be a promising strategy for TB treatment. Appropriate probiotics and prebiotics supplementation, along with antimycobacterial treatment, will improve the therapeutic effect of TB treatment and protect the gut and respiratory microbiota from dysbiosis.


Subject(s)
Microbiota , Mycobacterium tuberculosis , Probiotics , Tuberculosis, Pulmonary , Tuberculosis , Humans , Tuberculosis, Pulmonary/drug therapy , Tuberculosis/drug therapy , Lung/microbiology , Mycobacterium tuberculosis/physiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Probiotics/therapeutic use , Prebiotics , Dysbiosis/microbiology
18.
J Mater Chem B ; 11(47): 11235-11250, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37953738

ABSTRACT

L-3,4-Dihydroxyphenylalanine (L-DOPA) is widely used in Parkinson's disease treatment and is therefore in high demand. Development of an efficient method for the production of L-DOPA is urgently required. Nanozymes emulating tyrosine hydroxylase have attracted enormous attention for biomimetic synthesis of L-DOPA, but suffered from heterogeneity. Herein, a spherical porous iron-nitrogen-carbon nanozyme was developed for production of L-DOPA. Tannic acid chelated with ferrous ions to form a tannin-iron coordination framework as a carbon precursor. Iron and nitrogen co-doped carbon nanospheres were assembled via an evaporation-induced self-assembly process using urea as a nitrogen source, F127 as a soft template, and formaldehyde as a crosslinker. The nanozyme was obtained after carbonization and acid etching. The nanozyme possessed a dispersive iron atom anchored in the Fe-N coordination structure as an active site to mimic the active center of tyrosine hydroxylase. The material showed spherical morphology, uniform size, high specific surface area, a mesoporous structure and easy magnetic separation. The structural properties could promote the density and accessibility of active sites and facilitate mass transport and electron transfer. The nanozyme exhibited high activity to catalyze the hydroxylation of tyrosine to L-DOPA as tyrosine hydroxylase in the presence of ascorbic acid and hydrogen peroxide. The titer of DOPA reached 1.2 mM. The nanozyme showed good reusability and comparable enzyme kinetics to tyrosine hydroxylase with a Michaelis-Menten constant of 2.3 mM. The major active species was the hydroxyl radical. Biomimetic simulation of tyrosine hydroxylase using a nanozyme with a fine structure provided a new route for the efficient production of L-DOPA.


Subject(s)
Levodopa , Tyrosine 3-Monooxygenase , Tyrosine 3-Monooxygenase/chemistry , Levodopa/chemistry , Carbon/chemistry , Iron/chemistry , Porosity , Tannins
19.
STAR Protoc ; 4(4): 102728, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37979177

ABSTRACT

To better implement mesenchymal stem cell (MSC)-based therapy toward cartilage diseases, a more efficient and less off-target chondrogenesis protocol is needed. Here, we present a protocol to induce human MSC chondrogenesis via Wnt antagonism. We describe steps for pellet formation, Wnt antagonism-based chondrogenic induction, and refreshing the differentiation medium. We detail procedures for characterizing MSC chondrogenesis. By using Wnt antagonism instead of conventional transforming growth factor ß-based induction, this protocol avoids the potential for induction of chondrocyte hypertrophy/osteogenesis or other lineages. For complete details on the use and execution of this protocol, please refer to Hsieh et al. (2023).1.


Subject(s)
Chondrogenesis , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Cell Differentiation , Immunologic Factors
20.
Chem Biol Interact ; 386: 110771, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37866489

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a common respiratory disease characterized by symptoms of shortness of breath and chronic inflammation. Curcuma zedoaria (Christm.) Roscoe is a well-documented traditional medical herb that is frequently used in the treatment of COPD. Previously, we identified a diarylheptanoid compound (1-(4-hydroxy-5-methoxyphenyl)-7-(4,5-dihydroxyphenyl)-3,5-dihydroxyheptane; abbreviated as HMDD) from this herb that exhibited potent agonistic activity on ß2-adrenergic receptors (ß2 adrenoreceptor) that are present on airway smooth muscle cells. In this work, we used chemically synthesized HMDD compound, and confirmed its bioactivity on ß2 adrenoreceptors. Then by a proteomics study and anti-inflammatory evaluation detections, we found that HMDD downregulated the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) signaling pathway and suppressed the NLRP3 receptor expression in RAW264.7 macrophages and in a COPD model in A549 lung carcinoma cells. HMDD also decreased nitric oxide production levels, and impacted other interleukins and the phosphorylation of NF-κB and ERK pathways. We performed molecular docking of HMDD on ß2 adrenoreceptor and NLRP3 protein models. This work reports the anti-inflammatory effects of HMDD and suggests a dual-targeting mechanism of ß2-adrenoreceptor agonism and NLRP3 inhibition. Such a mechanism scientifically supports the clinical uses of Curcuma zedoaria (Christm.) Roscoe in treating COPD, as it can simultaneously relieve persistent breathlessness and inflammation. HMDD can be considered as a potential non-steroidal anti-inflammatory drug in novel therapy design for the treatment of COPD and other inflammatory diseases.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Pulmonary Disease, Chronic Obstructive , Humans , Curcuma , Diarylheptanoids/pharmacology , Molecular Docking Simulation , Signal Transduction , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism , Inflammation/drug therapy , Pulmonary Disease, Chronic Obstructive/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...