Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
ACS Biomater Sci Eng ; 10(5): 2995-3005, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38654432

ABSTRACT

Magnetic hyperthermia is a crucial medical engineering technique for treating diseases, which usually uses alternating magnetic fields (AMF) to interplay with magnetic substances to generate heat. Recently, it has been found that in some cases, there is no detectable temperature increment after applying an AMF, which caused corresponding effects surprisingly. The mechanisms involved in this phenomenon are not yet fully understood. In this study, we aimed to explore the role of Ca2+ overload in the magnetic hyperthermia effect without a perceptible temperature rise. A cellular system expressing the fusion proteins TRPV1 and ferritin was prepared. The application of an AMF (518 kHz, 16 kA/m) could induce the fusion protein to release a large amount of iron ions, which then participates in the production of massive reactive oxygen radicals (ROS). Both ROS and its induced lipid oxidation enticed the opening of ion channels, causing intracellular Ca2+ overload, which further led to decreased cellular viability. Taken together, Ca2+ overload triggered by elevated ROS and the induced oxidation of lipids contributes to the magnetic hyperthermia effect without a perceptible temperature rise. These findings would be beneficial for expanding the application of temperature-free magnetic hyperthermia, such as in cellular and neural regulation, design of new cancer treatment methods.


Subject(s)
Calcium , Cell Survival , Hyperthermia, Induced , Magnetic Fields , Reactive Oxygen Species , TRPV Cation Channels , Calcium/metabolism , Reactive Oxygen Species/metabolism , TRPV Cation Channels/metabolism , Humans , Hyperthermia, Induced/methods , Temperature , Ferritins/metabolism , Hyperthermia/metabolism
2.
ACS Chem Biol ; 19(5): 1151-1160, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38648729

ABSTRACT

Magnetogenetics has shown great potential for cell function and neuromodulation using heat or force effects under different magnetic fields; however, there is still a contradiction between experimental effects and underlying mechanisms by theoretical computation. In this study, we aimed to investigate the role of reactive oxygen species (ROS) in mechanical force-dependent regulation from a physicochemical perspective. The transient receptor potential vanilloid 4 (TRPV4) cation channels fused to ferritin (T4F) were overexpressed in HEK293T cells and exposed to static magnetic fields (sMF, 1.4-5.0 mT; gradient: 1.62 mT/cm). An elevation of ROS levels was found under sMF in T4F-overexpressing cells, which could lead to lipid oxidation. Compared with the overexpression of TRPV4, ferritin in T4F promoted the generation of ROS under the stimulation of sMF, probably related to the release of iron ions from ferritin. Then, the resulting ROS regulated the opening of the TRPV4 channel, which was attenuated by the direct addition of ROS inhibitors or an iron ion chelator, highlighting a close relationship among iron release, ROS production, and TRPV4 channel activation. Taken together, these findings indicate that the produced ROS under sMF act on the TRPV4 channel, regulating the influx of calcium ions. The study would provide a scientific basis for the application of magnetic regulation in cellular or neural regulation and disease treatment and contribute to the development of the more sensitive regulatory technology.


Subject(s)
Ferritins , Magnetic Fields , Reactive Oxygen Species , TRPV Cation Channels , TRPV Cation Channels/metabolism , Humans , Reactive Oxygen Species/metabolism , HEK293 Cells , Ferritins/metabolism , Ferritins/chemistry , Iron/metabolism , Calcium/metabolism
3.
bioRxiv ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38260527

ABSTRACT

While single cell studies have made significant impacts in various subfields of biology, they lag in the Glycosciences. To address this gap, we analyzed single-cell glycogene expressions in the Tabula Sapiens dataset of human tissues and cell types using a recent glycosylation-specific gene ontology (GlycoEnzOnto). At the median sequencing (count) depth, ~40-50 out of 400 glycogenes were detected in individual cells. Upon increasing the sequencing depth, the number of detectable glycogenes saturates at ~200 glycogenes, suggesting that the average human cell expresses about half of the glycogene repertoire. Hierarchies in glycogene and glycopathway expressions emerged from our analysis: nucleotide-sugar synthesis and transport exhibited the highest gene expressions, followed by genes for core enzymes, glycan modification and extensions, and finally terminal modifications. Interestingly, the same cell types showed variable glycopathway expressions based on their organ or tissue origin, suggesting nuanced cell- and tissue-specific glycosylation patterns. Probing deeper into the transcription factors (TFs) of glycogenes, we identified distinct groupings of TFs controlling different aspects of glycosylation: core biosynthesis, terminal modifications, etc. We present webtools to explore the interconnections across glycogenes, glycopathways, and TFs regulating glycosylation in human cell/tissue types. Overall, the study presents an overview of glycosylation across multiple human organ systems.

4.
J Appl Microbiol ; 134(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38066686

ABSTRACT

AIMS: Magnetotactic bacteria (MTB) can use their unique intracellular magnetosome organelles to swim along the Earth's magnetic field. They play important roles in the biogeochemical cycles of iron and sulfur. Previous studies have shown that the applied magnetic fields could affect the magnetosome formation and antioxidant defense systems in MTB. However, the molecular mechanisms by which magnetic fields affect MTB cells remain unclear. We aim to better understand the dark at 28°C-29°C for 20 h, as shownthe interactions between magnetic fields and cells, and the mechanism of MTB adaptation to magnetic field at molecular levels. METHODS AND RESULTS: We performed microbiological, transcriptomic, and genetic experiments to analyze the effects of a weak static magnetic field (SMF) exposure on the cell growth and magnetosome formation in the MTB strain Magnetospirillum magneticum AMB-1. The results showed that a 1.5 mT SMF significantly promoted the cell growth but reduced magnetosome formation in AMB-1, compared to the geomagnetic field. Transcriptomic analysis revealed decreased expression of genes primarily involved in the sulfate reduction pathway. Consistently, knockout mutant lacking adenylyl-sulfate kinase CysC did no more react to the SMF and the differences in growth and Cmag disappeared. Together with experimental findings of increased reactive oxidative species in the SMF-treated wild-type strain, we proposed that cysC, as a key gene, can participate in the cell growth and mineralization in AMB-1 by SMF regulation. CONCLUSIONS: This study suggests that the magnetic field exposure can trigger a bacterial oxidative stress response involved in AMB-1 growth and magnetosome mineralization by regulating the sulfur metabolism pathway. CysC may serve as a pivotal enzyme in mediating sulfur metabolism to synchronize the impact of SMF on both growth and magnetization of AMB-1.


Subject(s)
Magnetosomes , Magnetosomes/genetics , Magnetosomes/metabolism , Sulfates/metabolism , Metabolic Networks and Pathways , Sulfur/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
Brain Res ; 1810: 148372, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37094765

ABSTRACT

Rhythmic physical stimulations have emerged as effective noninvasive intervention strategies in the treatment of pathological cognitive deficits. Transcranial magnetic stimulation (TMS) can regulate neural firing and improve the learning and memory abilities of rodents or patients with cognitive deterioration. However, the effects of elaborate magnetic stimulation with low intensity during aging or other neurological disordering processes on cognitive decline remain unclear. In this study, we developed an elaborate modulated pulsed magnetic field (PMF) stimulation with a complex pattern in the theta repeated frequency and gamma carrier frequency and then determined the effects of this rhythmic PMF on the cognitive function of accelerated aging mice established by chronic subcutaneous injection of D-galactose (D-gal). The results of the Morris water maze (MWM) test showed that mice treated with modulated PMF displayed shorter swimming distance and latency time in the spatial exploration acquisition trial and exhibited a significant preference in the target presumptive platform area in the probe trial, all of which indicated the enhancement in spatial learning and memory abilities upon PMF stimulation of the accelerated aging mice. The novel object recognition (NOR) test results showed a similar tendency as the MWM results although without statistical significance. Further determination of histological structures demonstrated that the cognitive function-related hippocampal CA3 neurons degenerated upon D-gal injection, which could also be partially rescued by PMF application. In comparison with the high-intensity TMS approach, low-intensity magnetic stimulation could be much safer and allow deeper penetration without adverse effects such as seizure. In summary, modulated PMF, even with low intensity, could effectively improve rodent cognitive functions impaired by D-gal-induced accelerated aging, which might provide a new safe therapeutic strategy for cognitive deficits as well as other neurological disorders.


Subject(s)
Cognition Disorders , Galactose , Mice , Animals , Aging/pathology , Cognition , Magnetic Fields , Maze Learning , Hippocampus
6.
J Control Release ; 351: 941-953, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36202151

ABSTRACT

Since magnetic micro/nano-materials can serve as multifunctional transducers for remote control of cell functions by applying diverse magnetic fields, magnetic cell manipulation provides a highly promising tool in biomedical research encompassing neuromodulation, tissue regeneration engineering and tumor cell destruction. Magnetotactic bacteria (MTB), which contain natural magnetic materials, can sensitively respond to external magnetic fields via their endogenous magnetosome chains. Here, we developed a technique for magnetotactic bacteria-based cell modulation and tumor suppression combined with a swing magnetic field. We enabled MTB cells to recognize and bind to mammalian tumor cells via functional modification with RGD peptides onto the surfaces of MTB cells, and RGD-modified MTB bacteria could interact with the targeted tumor cells effectively. The magnetic torque, which was due to the interaction of the long magnetosome chain inside the MTB bacterial cell and the applied swing magnetic field, could result in obvious swing magnetic behaviors of the modified MTB bacteria bound to tumor cell surfaces and thus subsequently exert a sustained magnetomechanical oscillation on the tumor cell surfaces, which could induce a significant activation of Ca2+ ion influx in vitro and tumor growth inhibition in vivo. These findings suggest that MTB cells mediated magnetomechanical stimulation, which is remotely controlled by dynamic magnetic fields, as an effective way to regulate cell signaling and treat tumor growth, which will shed the light on further biomedical applications utilizing whole magnetotactic bacteria.


Subject(s)
Magnetosomes , Animals , Magnetosomes/metabolism , Gram-Negative Bacteria , Bacteria/metabolism , Magnetics , Mammals
8.
Sci Rep ; 12(1): 11022, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773319

ABSTRACT

The Chelonid herpesvirus 5 (ChHV5) infection possibly associated to the fibropapillomatosis (FP) disease in sea turtles worldwide remains largely unknown and limited studies have used serological approaches to detection of antibodies against ChHV5 in sea turtles with or without FP. We aimed to develop diagnostic platforms based on the viral glycoprotein B (gB) for ChHV5 infection. In this study, five recombinant sub-fragments of the gB protein were successfully expressed and subsequently served as antigens for both seroprevalence and antibody production. The results indicated that the five expressed proteins harbored antigenicity, shown by the results of using sera from sea turtles that were PCR-positive for ChHV5. Moreover, seropositive sea turtles were significantly associated with FP (p < 0.05). We further used the expressed protein to produce antibodies for immunohistochemical analysis, and found that the in-house-generated sera specifically stained FP lesions while normal epithelium tissues remained negative. Of major importance, the reactivity in the ballooning degeneration area was much stronger than that in other regions of the FP lesion/tumour, thus indicating ChHV5 viral activities. In summary, the developed serological test and specific anti-gB antibodies for IHC analysis could be applied for further understanding of epidemiological distributions of ChHV5 infection in sea turtles, and studies of ChHV5 pathogenesis.


Subject(s)
Alphaherpesvirinae , Herpesviridae Infections , Herpesviridae , Skin Neoplasms , Turtles , Animals , Antibody Formation , Glycoproteins , Herpesviridae/genetics , Herpesviridae Infections/diagnosis , Herpesviridae Infections/veterinary , Seroepidemiologic Studies
9.
Int J Biol Macromol ; 208: 760-771, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35364198

ABSTRACT

Wound dressing is a kind of significant artificial materials for protecting injured tissues and promoting wound healing. However, fabrication of antibacterial wound dressing usually involves tedious procedures and toxic components. Herein, we demonstrate a multifunctional chitosan/silver/tannic acid (CS/Ag/TA) cryogel based on an economic method to block acute hemorrhage and promote wound healing. The prepared CS/Ag/TA cryogel not only performs steady stability and compressibility, but also shows good antibacterial ability for both S. aureus and E. coli. Attributing to TA molecules, the CS/Ag/TA cryogel can effectively scavenge more than 95% of free radicals, showing effective oxidation resistance. Due to the porous structure and positive charge of CS, the prepared cryogel exhibits good hemostatic capability with a hemostasis time less than 20 s. Benefitting from the good biocompatibility and cell proliferation, the CS/Ag/TA cryogel can significantly promote wound repair in the skin incision model. All the results indicated that the greenly fabricated cryogel can be widely applied in clinic for hemostasis and wound healing.


Subject(s)
Chitosan , Silver , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Cryogels/chemistry , Escherichia coli , Hemostasis , Silver/pharmacology , Staphylococcus aureus , Tannins/pharmacology , Wound Healing
10.
J Mater Chem B ; 10(14): 2430-2443, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35293918

ABSTRACT

High-density, end-anchored macromolecules that form so-called polymer brushes are popular components of bio-inspired surface coatings. In a bio-mimetic approach, they have been utilized to reduce friction, repel contamination and control wetting, in particular in the development of biomedical materials. For reliable application of these coatings, it is critical that the performance of these coatings does not degrade in time. Yet, it is well-known that polymer brushes can deteriorate and degraft when exposed to water(-vapor) and this strongly limits the durability of these coatings. In this article, we provide an overview of the current status of research on the stability of polymer brushes. Moreover, we review different synthetic strategies, some of which are bio-inspired by itself, to enhance the long-term stability of these brushes. Based on this overview, we identify open question and issues to be resolved for brushes to be applied as durable bio-inspired surface coatings.


Subject(s)
Biocompatible Materials , Polymers , Friction
11.
ACS Appl Mater Interfaces ; 14(12): 14049-14058, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35311270

ABSTRACT

Magnetotactic bacteria are ubiquitous microorganisms in nature that synthesize intracellular magnetic nanoparticles called magnetosomes in a gene-controlled way and arrange them in chains. From in vitro to in vivo, we demonstrate that the intact body of Magnetospirillum magneticum AMB-1 has potential as a natural magnetic hyperthermia material for cancer therapy. Compared to chains of magnetosomes and individual magnetosomes, the entire AMB-1 cell exhibits superior heating capability under an alternating magnetic field. When incubating with tumor cells, the intact AMB-1 cells disperse better than the other two types of magnetosomes, decreasing cellular viability under the control of an alternating magnetic field. Furthermore, in vivo experiments in nude mice with neuroblastoma found that intact AMB-1 cells had the best antitumor activity with magnetic hyperthermia therapy compared to other treatment groups. These findings suggest that the intact body of magnetotactic bacteria has enormous promise as a natural material for tumor magnetic hyperthermia. In biomedical applications, intact and living magnetotactic bacteria play an increasingly essential function as a targeting robot due to their magnetotaxis.


Subject(s)
Hyperthermia, Induced , Magnetosomes , Neuroblastoma , Animals , Magnetic Fields , Magnetosomes/metabolism , Mice , Mice, Nude , Neuroblastoma/metabolism , Neuroblastoma/therapy
12.
Colloids Surf B Biointerfaces ; 172: 308-314, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30176510

ABSTRACT

The biomineralized bacterial magnetic nanoparticles (BMPs) have been widely studied for biomedical applications with their magnetic properties and a layer of biomembrane. Herein, BMPs were firstly used for magnetically targeted photothermal cancer therapy in vivo. A self-build C-shaped bipolar permanent magnet was used for magnetic targeting though the generation of a high gradient magnetic field within a small target area. For in vitro simulated experiment, BMPs had a high retention rate in magnetically targeted region with different flow rates. In H22 tumor bearing mice, the magnetic targeting induced a 40% increase of BMPs retention in tumor tissues. In vivo photothermal therapy with 808 nm laser irradiation could induce a complete tumor elimination with magnetic targeting. These results indicated that the systematically administrated BMPs with magnetic targeting would be promising for photothermal cancer therapy.


Subject(s)
Bacteria/metabolism , Hyperthermia, Induced , Magnetite Nanoparticles/chemistry , Neoplasms/therapy , Phototherapy , Animals , HeLa Cells , Hep G2 Cells , Humans , Magnetite Nanoparticles/ultrastructure , Mice , Neoplasms/blood
13.
Chem Sci ; 9(9): 2575-2580, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29719712

ABSTRACT

Pickering emulsion is emerging as an advanced platform for catalysis because of the large oil/water interface area for reaction and its superior efficiency. How to enhance the mass transportation within the micro-droplets is the biggest obstacle in further improving the efficiency of the Pickering emulsion system. In this study, we propose and solve this problem for the first time using natural magnetotactic bacteria as nanoscale magnetic stirring bars, which can be encapsulated into each micro-droplet and used to stir the solution to accelerate the mass transportation under an external magnet, and thus significantly enhance the reaction rate of Pickering emulsion. Taking the epoxidation of cyclooctene in the Pickering emulsion system as a demonstration, the reaction rate was enhanced three times with nanoscale magnetic stirring bars compared to that of traditional Pickering emulsion, and was even thirty times higher than that of conventional stirrer-driven biphasic systems. We envision that this strategy will bring biphasic reactions with fundamental innovations toward more green, efficient and sustainable chemistry.

14.
Environ Microbiol ; 19(9): 3638-3648, 2017 09.
Article in English | MEDLINE | ID: mdl-28752909

ABSTRACT

Magnetotactic bacteria (MTB) demonstrate photoresponse. However, little is known about the biological significance of this behaviour. Magnetosomes exhibit peroxidase-like activity and can scavenge reactive oxygen species (ROS). Magnetosomes extracted from the Magnetospirillum magneticum strain AMB-1 show enhanced peroxidase-like activity under illumination. The present study investigated the effects of light irradiation on nonmagnetic (without magnetosomes) and magnetic (with magnetosomes) AMB-1 cells. Results showed that light irradiation did not affect the growth of nonmagnetic and magnetic cells but significantly increased magnetosome synthesis and reduced intracellular ROS level in magnetic cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to analyse the expression level of magnetosome formation-associated genes (mamA, mms6, mms13 and mmsF) and stress-related genes (recA, oxyR, SOD, amb0664 and amb2684). Results showed that light irradiation upregulated the expression of mms6, mms13 and mmsF. Furthermore, light irradiation upregulated the expression of stress-related genes in nonmagnetic cells but downregulated them in magnetic cells. Additionally, magnetic cells exhibited stronger phototactic behaviour than nonmagnetic ones. These results suggested that light irradiation could heighten the ability of MTB to eliminate intracellular ROS and help them adapt to lighted environments. This phenomenon may be related to the enhanced peroxidase-like activity of magnetosomes under light irradiation.


Subject(s)
Magnetosomes/metabolism , Magnetospirillum/metabolism , Phototaxis/physiology , Reactive Oxygen Species/metabolism , Bacterial Proteins/metabolism , Light , Magnetics , Magnetosomes/genetics , Magnetospirillum/genetics , Magnetospirillum/growth & development , Peroxidase/metabolism
15.
Nanomedicine ; 13(2): 363-370, 2017 02.
Article in English | MEDLINE | ID: mdl-27562212

ABSTRACT

This study aims to explore a therapeutic tool that kills pathogens by using mechanical force other than temperature. We fabricated a device that generates a swing magnetic field (sMF) with low-heat production and then evaluated the killing effect of magnetotactic bacteria MO-1 on Staphylococcus aureus (S. aureus) under the sMF. S. aureus was only killed under the sMF when attached to MO-1 cells. The killing efficiency increased with increasing attachment ratio of MO-1 cells to S. aureus. Treatment with antibody-coated MO-1 cells under the sMF improved the healing of S. aureus-infected wound. The theoretical analysis demonstrated that MO-1 cells generated a mechanical force of approximately 8kPa under the sMF, thereby exerting on S. aureus and inducing cell death. The proposed platform, which uses magnetotactic bacteria under the sMF to generate mechanical force, provides a basis for development of therapeutic tools to treat infectious diseases.


Subject(s)
Magnetics/methods , Staphylococcal Infections/therapy , Staphylococcus aureus , Animals , Gram-Negative Bacteria , Magnetic Fields , Mice , Wound Infection
16.
Biomaterials ; 104: 352-60, 2016 10.
Article in English | MEDLINE | ID: mdl-27487574

ABSTRACT

The bacterial magnetic nanoparticles (BMPs) are biomineralized by the magnetotactic bacteria and naturally covered with a layer of biomembrane. Herein, BMPs were isolated and firstly used for the photothermal therapy (PTT) of cancer under the guidance of magnetic resonance imaging (MRI) in vitro and in vivo. The results showed that BMPs could rapidly convert the energy of 808 nm near-infrared (NIR) light into heat. After internalization by the HepG2 tumor cells, BMPs with good biocompatibility could induce an efficient killing effect after NIR light irradiation, along with a change of mitochondrial membrane potential (ΔΨm) and level of intracellular reactive oxygen species (ROS). The in vivo therapy also confirms that PTT with BMPs could effectively and completely ablate the tumor in mice without inducing observable toxicity. T2-weighted MRI showed a clear tumor boundary and a 25% enhancement of negative contrast enhancement at the tumor site, suggesting that BMPs can act as an effective MRI contrast agent for guiding the PTT. Our results indicate that BMPs could be a potential theranostic agent for simultaneous MRI and PTT of cancer.


Subject(s)
Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/therapeutic use , Magnetospirillum/metabolism , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/therapy , Phototherapy/methods , Theranostic Nanomedicine/methods , Animals , Female , Hep G2 Cells , Humans , Hyperthermia, Induced/methods , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/microbiology , Magnetospirillum/chemistry , Mice , Mice, Inbred ICR , Treatment Outcome
17.
Appl Environ Microbiol ; 82(7): 2219-26, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26873320

ABSTRACT

Staphylococcus aureus is a common hospital and household pathogen. Given the emergence of antibiotic-resistant derivatives of this pathogen resulting from the use of antibiotics as general treatment, development of alternative therapeutic strategies is urgently needed. Here, we assess the feasibility of killing S. aureus cells in vitro and in vivo through magnetic hyperthermia mediated by magnetotactic bacteria that possess magnetic nanocrystals and demonstrate magnetically steered swimming. The S. aureus suspension was added to magnetotactic MO-1 bacteria either directly or after coating with anti-MO-1 polyclonal antibodies. The suspensions were then subjected to an alternating magnetic field (AMF) for 1 h. S. aureus viability was subsequently assessed through conventional plate counting and flow cytometry. We found that approximately 30% of the S. aureus cells mixed with uncoated MO-1 cells were killed after AMF treatment. Moreover, attachment between the magnetotactic bacteria and S. aureus increased the killing efficiency of hyperthermia to more than 50%. Using mouse models, we demonstrated that magnetic hyperthermia mediated by antibody-coated magnetotactic MO-1 bacteria significantly improved wound healing. These results collectively demonstrated the effective eradication of S. aureus both in vitro and in vivo, indicating the potential of magnetotactic bacterium-mediated magnetic hyperthermia as a treatment for S. aureus-induced skin or wound infections.


Subject(s)
Bacteria/chemistry , Magnetics/methods , Staphylococcal Infections/microbiology , Staphylococcus aureus/chemistry , Animals , Antibiosis , Bacterial Physiological Phenomena , Biological Therapy , Hot Temperature , Humans , Magnetic Fields , Male , Mice , Mice, Inbred BALB C , Microbial Viability , Staphylococcal Infections/therapy , Staphylococcus aureus/growth & development
18.
IEEE Trans Pattern Anal Mach Intell ; 37(2): 230-42, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26353238

ABSTRACT

In applications we may want to compare different document collections: they could have shared content but also different and unique aspects in particular collections. This task has been called comparative text mining or cross-collection modeling. We present a differential topic model for this application that models both topic differences and similarities. For this we use hierarchical Bayesian nonparametric models. Moreover, we found it was important to properly model power-law phenomena in topic-word distributions and thus we used the full Pitman-Yor process rather than just a Dirichlet process. Furthermore, we propose the transformed Pitman-Yor process (TPYP) to incorporate prior knowledge such as vocabulary variations in different collections into the model. To deal with the non-conjugate issue between model prior and likelihood in the TPYP, we thus propose an efficient sampling algorithm using a data augmentation technique based on the multinomial theorem. Experimental results show the model discovers interesting aspects of different collections. We also show the proposed MCMC based algorithm achieves a dramatically reduced test perplexity compared to some existing topic models. Finally, we show our model outperforms the state-of-the-art for document classification/ideology prediction on a number of text collections.

19.
Enzyme Microb Technol ; 72: 72-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25837510

ABSTRACT

Magnetosomes are intracellular structures produced by magnetotactic bacteria and are magnetic nanoparticles surrounded by a lipid bilayer membrane. Magnetosomes reportedly possess intrinsic enzyme mimetic activity similar to that found in horseradish peroxidase (HRP) and can scavenge reactive oxygen species depending on peroxidase activity. Our previous study has demonstrated the phototaxis characteristics of Magnetospirillum magneticum strain AMB-1 cells, but the mechanism is not well understood. Therefore, we studied the relationship between visible-light irradiation and peroxidase-like activity of magnetosomes extracted from M. magneticum strain AMB-1. We then compared this characteristic with that of HRP, iron ions, and naked magnetosomes using 3,3',5,5'-tetramethylbenzidine as a peroxidase substrate in the presence of H2O2. Results showed that HRP and iron ions had different activities from those of magnetosomes and naked magnetosomes when exposed to visible-light irradiation. Magnetosomes and naked magnetosomes had enhanced peroxidase-like activities under visible-light irradiation, but magnetosomes showed less affinity toward substrates than naked magnetosomes under visible-light irradiation. These results suggested that the peroxidase-like activity of magnetosomes may follow an ordered ternary mechanism rather than a ping-pong mechanism. This finding may provide new insight into the function of magnetosomes in the phototaxis in magnetotactic bacteria.


Subject(s)
Magnetosomes/metabolism , Magnetospirillum/metabolism , Peroxidases/metabolism , Horseradish Peroxidase/metabolism , Horseradish Peroxidase/radiation effects , Hydrogen Peroxide/metabolism , Iron/metabolism , Kinetics , Light , Magnetosomes/radiation effects , Magnetospirillum/radiation effects , Models, Biological , Peroxidases/isolation & purification , Peroxidases/radiation effects
20.
Biomed Microdevices ; 16(5): 761-70, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24951158

ABSTRACT

Magnetotactic bacteria exhibit superiority over other bacteria in fabricating microrobots because of their high motility and convenient controllability. In this study, a microrobot system is constructed using magnetotactic bacteria MO-1 and applied in pathogenic separation. The feasibility of this approach is demonstrated using Staphylococcus aureus. The MO-1 magnetotactic bacterial microrobots are fabricated by binding magnetotactic bacteria MO-1 with their rabbit anti-MO-1 polyclonal antibodies. The efficient binding of MO-1 magnetotactic bacterial microrobots to Staphylococcus aureus is corroborated by phase contrast microscopic and transmission electron microscopic analyses. Further, a microfluidic chip is designed and produced, and the MO-1 microrobots are magnetically guided toward a sample pool in the chip. In the sample pool, Staphylococcus aureus samples are loaded on the microrobots and then carried away to a detection pool in the chip, suggesting the microrobots have successfully carried and separated pathogen. This study is the first to demonstrate bacterial microrobots carrying pathogens and more importantly, it reflects the great potential of using magnetotactic bacteria to develop magnetic-guided, auto-propelled microrobots for pathogen isolation.


Subject(s)
Antibodies, Bacterial/chemistry , Magnetosomes/chemistry , Microchip Analytical Procedures , Serratia marcescens/chemistry , Staphylococcus aureus/cytology , Animals , Lab-On-A-Chip Devices , Microchip Analytical Procedures/methods , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...