Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.031
Filter
1.
Sci Rep ; 14(1): 10531, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719880

ABSTRACT

This study aims to explore the optimal driving speed for ground vibration in suburban railway underground sections. We focused on the ground surface of suburban railway underground sections and developed a 3D finite element dynamic coupling model for the tunnel-soil system. Subsequently, considering factors such as train speed and passenger load, we analyzed the propagation characteristics of ground vibration responses in urban railway underground sections. The research results indicate a significant amplification phenomenon in the peak power spectrum of measurement points near the tunnels in underground sections. The high-frequency components of the power spectrum between measurement points are noticeably higher between the two tunnels. Furthermore, as the train speed increases, this amplification phenomenon becomes more pronounced, and the power spectrum of each measurement point mainly concentrates on several frequency bands, with the amplitude of the power spectrum near the prominent frequencies also increasing. However, when the train speed is between 100 and 120 km/h, the impact on the amplitude of the power spectrum at measurement points above the running tunnel is minimal. Additionally, the amplitude of the middle-to-high frequency components in the power spectrum increases with the increase in passenger numbers. The impact on the peak acceleration amplitude at each measurement point is minimal when the train speed is 80 km/h or below. However, once the train speed exceeds 80 km/h, the peak acceleration amplitude above the running tunnel rapidly increases, reaching its maximum value at 113 km/h, and then gradually decreasing.

2.
BMC Gastroenterol ; 24(1): 158, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720308

ABSTRACT

BACKGROUND: Primary sclerosing cholangitis (PSC) is a complex disease with pathogenic mechanisms that remain to be elucidated. Previous observational studies with small sample sizes have reported associations between PSC, dyslipidemia, and gut microbiota dysbiosis. However, the causality of these associations is uncertain, and there has been no systematic analysis to date. METHODS: The datasets comprise data on PSC, 179 lipid species, and 412 gut microbiota species. PSC data (n = 14,890) were sourced from the International PSC Study Group, while the dataset pertaining to plasma lipidomics originated from a study involving 7174 Finnish individuals. Data on gut microbiota species were derived from the Dutch Microbiome Project study, which conducted a genome-wide association study involving 7738 participants. Furthermore, we employed a two-step Mendelian randomization (MR) analysis to quantify the proportion of the effect of gut microbiota-mediated lipidomics on PSC. RESULTS: Following a rigorous screening process, our MR analysis revealed a causal relationship between higher levels of gene-predicted Phosphatidylcholine (O-16:1_18:1) (PC O-16:1_18:1) and an increased risk of developing PSC (inverse variance-weighted method, odds ratio (OR) 1.30, 95% confidence interval (CI) 1.03-1.63). There is insufficient evidence to suggest that gene-predicted PSC impacts the levels of PC O-16:1_18:1 (OR 1.01, 95% CI 0.98-1.05). When incorporating gut microbiota data into the analysis, we found that Eubacterium rectale-mediated genetic prediction explains 17.59% of the variance in PC O-16:1_18:1 levels. CONCLUSION: Our study revealed a causal association between PC O-16:1_18:1 levels and PSC, with a minor portion of the effect mediated by Eubacterium rectale. This study aims to further explore the pathogenesis of PSC and identify promising therapeutic targets. For patients with PSC who lack effective treatment options, the results are encouraging.


Subject(s)
Cholangitis, Sclerosing , Gastrointestinal Microbiome , Lipidomics , Mendelian Randomization Analysis , Humans , Cholangitis, Sclerosing/blood , Cholangitis, Sclerosing/microbiology , Cholangitis, Sclerosing/genetics , Gastrointestinal Microbiome/genetics , Male , Genome-Wide Association Study , Female , Phosphatidylcholines/blood , Dysbiosis/blood , Middle Aged , Adult
3.
Orthop J Sports Med ; 12(5): 23259671241248165, 2024 May.
Article in English | MEDLINE | ID: mdl-38726236

ABSTRACT

Background: The Victorian Institute of Sport Assessment-Patella (VISA-P) questionnaire is a widely accepted instrument for measuring the severity of symptoms and pain in patients having sustained patellar tendinopathy. Purpose: To adapt the VISA-P questionnaire cross-culturally to a traditional Chinese version (VISA-P-Ch) and validate its psychometric properties. Study Design: Cohort study (diagnosis); Level of evidence, 3. Methods: The VISA-P questionnaire was adapted to a traditional Chinese version following international recommended guidelines, including translation, synthesis, back translation, revision by expert committee, pretesting, and validation. The psychometric properties were tested in 15 healthy controls and 15 participants with patellar tendinopathy. Face validity was judged by the authors and participants. Known-groups validity was tested by comparing the VISA-P-Ch scores between symptomatic and asymptomatic participants using an independent t test. Concurrent validity was determined by comparing the Blazina classification of the participants against VISA-P-Ch scores using the Spearman correlation coefficient. Test-retest reliability was assessed by calculating the intraclass correlation coefficient (ICC) following a 24- to 48-hour interval. Internal consistency was determined by the Cronbach alpha. Results: The expert committee and participants reported good face validity of the VISA-P-Ch. Significantly higher scores were found in the control group than in the patellar tendinopathy group (98.47 ± 3.04 vs 65 ± 11.9; P < .001). Concurrent validity showed a high correlation between VISA-P-Ch and the Blazina classification system (r = -0.899; P < .01). The test-retest reliability was excellent (ICC = 0.964). Internal consistency was found to be good for both the first and second assessments (Cronbach α = 0.834 and 0.851). Conclusion: The VISA-P-Ch was proven to be a reliable and valid questionnaire with similar psychometric properties as the original VISA-P.

4.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724987

ABSTRACT

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Subject(s)
Diabetic Cardiomyopathies , Dynamins , Endothelial Cells , Mice, Inbred C57BL , Signal Transduction , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/etiology , Humans , Dynamins/metabolism , Dynamins/genetics , Male , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/enzymology , Endothelial Cells/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Ferroptosis/drug effects , Disease Models, Animal , Cells, Cultured , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/enzymology , Mice , Protein Processing, Post-Translational , Coronary Circulation , Intracellular Signaling Peptides and Proteins
5.
Article in English | MEDLINE | ID: mdl-38733352

ABSTRACT

Among various anode materials, SiOx is regarded as the next generation of promising anode due to its advantages of high theoretical capacity with 2680 mA h g-1, low lithium voltage platform, and rich natural resources. However, the pure SiOx-based materials have slow lithium storage kinetics attributed to their low electron/ion conductive properties and the large volume change during lithiation/delithiation, restricting their practical application. Optimizing the SiOx material structures and the fabricating methods to mitigate these fatal defects and adapt to the market demand for energy density is critical. Hence, SiOx material with TiO1-xNx phase modification has been prepared by simple, low-cost, and scalable ball milling and then combined with nitridation. Consequently, based on the TiO1-xNx modified layer, which boosts high ionic/electronic conductivity, chemical stability, and excellent mechanical properties, the SiOx@TON-10 electrode shows highly stable lithium-ion storage performance for lithium-ion half/full batteries due to a stable solid-electrolyte interface layer, fast Li+ transport channel, and alleviative volumetric expansion, further verifying its practical feasibility and universal applicability.

6.
Environ Pollut ; 352: 124130, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729511

ABSTRACT

Particulate matter (PM) has been a dominant contributor to air contamination, which will enter the central nervous system (CNS), causing neurotoxicity. However, the biological mechanism is poorly identified. In this study, C57BL/6J mice were applied to evaluate the neurotoxicity of collected fine particulate matter (PM2.5), via oropharyngeal aspiration at two ambient equivalent concentrations. The Y-maze results showed that PM2.5 exposure in mice would lead to the damage in hippocampal-dependent working memory. In addition, cell neuroinflammation, microglial activation were detected in hippocampus of PM2.5-exposure mice. To confirm the underlying mechanism, the microarray assay was conducted to screen the differentially expressed genes (DEGs) in microglia after PM2.5 exposure, and the results indicated the enrichment of DEGs in ferroptosis pathways. Furthermore, Heme oxygenase-1 (Hmox1) was found to be one of the most remarkably upregulated genes after PM2.5 exposure for 24 h. And PM2.5 exposure induced ferroptosis with iron accumulation through heme degradation by Nrf2-mediated Hmox1 upregulation, which could be eliminated by Nrf2-inhibition. Meanwhile, Hmox1 antagonist zinc protoporphyrin IX (ZnPP) could protect BV2 cells from ferroptosis. The results taken together indicated that PM2.5 resulted in the ferroptosis by causing iron overload through Nrf2/Hmox1 signaling pathway, which could account for the inflammation in microglia.

7.
Poult Sci ; 103(7): 103818, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38733755

ABSTRACT

Mule ducks tend to accumulate abundant fat in their livers via feeding, which leads to the formation of a fatty liver that is several times larger than a normal liver. However, the mechanism underlying fatty liver formation has not yet been elucidated. Fibroblast growth factor 1 (FGF1), a member of the FGF superfamily, is involved in cellular lipid metabolism and mitosis. This study aims to investigate the regulatory effect of FGF1 on lipid metabolism disorders induced by complex fatty acids in primary mule duck liver cells and elucidate the underlying molecular mechanism. Hepatocytes were induced by adding 1,500:750 µmol/L oleic and palmitic acid concentrations for 36 h, which were stimulated with FGF1 concentrations of 0, 10, 100, and 1000 ng/mL for 12 h. The results showed that FGF1 significantly reduced the hepatic lipid droplet deposition and triglyceride content induced by complex fatty acids; it also reduced oxidative stress; decreased reactive oxygen species fluorescence intensity and malondialdehyde content; upregulated the expression of antioxidant factors nuclear factor erythroid 2 related factor 2 (Nrf2), HO-1, and NQO-1; significantly enhanced liver cell activity; promoted cell cycle progression; inhibited cell apoptosis; upregulated cyclin-dependent kinase 1 (CDK1) and BCL-2 mRNA expression; and downregulated Bax and Caspase-3 expression. In addition, FGF1 promoted AMPK phosphorylation, activated the AMPK pathway, upregulated AMPK gene expression, and downregulated the expression of SREBP1 and ACC1 genes, thereby alleviating excessive fat accumulation in liver cells induced by complex fatty acids. In summary, FGF1 may alleviate lipid metabolism disorders induced by complex fatty acids in primary mule duck liver cells by activating the AMPK signaling pathway.

8.
Front Neurosci ; 18: 1368507, 2024.
Article in English | MEDLINE | ID: mdl-38690372

ABSTRACT

Introduction: Peripheral sensory neurons serve as the initial responders to the external environment. How these neurons react to different sensory stimuli, such as mechanical or thermal forces applied to the skin, remains unclear. Methods: Using in vivo two-photon Ca2+ imaging in the lumbar 4 dorsal root ganglion (DRG) of awake Thy1.2-GCaMP6s mice, we assessed neuronal responses to various mechanical (punctate or dynamic) and thermal forces (heat or cold) sequentially applied to the paw plantar surface. Results: Our data indicate that in normal awake male mice, approximately 14 and 38% of DRG neurons respond to either single or multiple modalities of stimulation. Anesthesia substantially reduces the number of responsive neurons but does not alter the ratio of cells exhibiting single-modal responses versus multi-modal responses. Following peripheral nerve injury, DRG cells exhibit a more than 5.1-fold increase in spontaneous neuronal activity and a 1.5-fold increase in sensory stimulus-evoked activity. As neuropathic pain resulting from nerve injury progresses, the polymodal nature of sensory neurons intensifies. The polymodal population increases from 39.1 to 56.9%, while the modality-specific population decreases from 14.7 to 5.0% within a period of 5 days. Discussion: Our study underscores polymodality as a significant characteristic of primary sensory neurons, which becomes more pronounced during the development of neuropathic pain.

9.
Nano Lett ; 24(19): 5774-5782, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709116

ABSTRACT

Flexible shortwave infrared detectors play a crucial role in wearable devices, bioimaging, automatic control, etc. Commercial shortwave infrared detectors face challenges in achieving flexibility due to the high fabrication temperature and rigid material properties. Herein, we develop a high-performance flexible Te0.7Se0.3 photodetector, resulting from the unique 1D crystal structure and small elastic modulus of Te-Se alloying. The flexible photodetector exhibits a broad-spectrum response ranging from 365 to 1650 nm, a fast response time of 6 µs, a broad linear dynamic range of 76 dB, and a specific detectivity of 4.8 × 1010 Jones at room temperature. The responsivity of the flexible detector remains at 93% of its initial value after bending with a small curvature of 3 mm. Based on the optimized flexible detector, we demonstrate its application in shortwave infrared imaging. These results showcase the great potential of Te0.7Se0.3 photodetectors for flexible electronics.

10.
Cancer Med ; 13(9): e7193, 2024 May.
Article in English | MEDLINE | ID: mdl-38738459

ABSTRACT

BACKGROUND: Consolidation therapy improves the duration of response among patients with primary central nervous system lymphoma (PCNSL). Lenalidomide maintenance has shown encouraging results in older patients with PCNSL. Herein, we performed a retrospective, single-center analysis to evaluate the effect of lenalidomide maintenance on the duration of response in patients with newly-diagnosed PCNSL. METHODS: Sixty-nine adult patients with PCNSL who achieved complete remission or partial remission (PR) after induction therapy were enrolled. The median age of patients was 58.0 years. The maintenance group (n = 35) received oral lenalidomide (25 mg/day) for 21 days, every 28 days for 24 months; the observation group did not undergo any further treatment. RESULTS: After a median follow-up of 32.6 months, the maintenance group experienced fewer relapse events. However, the median progression-free survival (PFS) was similar between groups (36.1 vs. 30.6 months; hazard ratio, 0.78; 95% confidence interval, 0.446). Lenalidomide maintenance significantly improved PFS and overall survival (OS) only among patients who experienced PR after induction. The median duration of lenalidomide maintenance was 18 months; lenalidomide was well tolerated and minimally impacted the quality of life. CONCLUSIONS: The present study was the first to evaluate lenalidomide maintenance as a frontline treatment among patients with PCNSL, PFS and OS did not improve, although the safety profile was satisfactory.


Subject(s)
Central Nervous System Neoplasms , Lenalidomide , Maintenance Chemotherapy , Methotrexate , Humans , Lenalidomide/administration & dosage , Lenalidomide/therapeutic use , Female , Male , Middle Aged , Retrospective Studies , Central Nervous System Neoplasms/drug therapy , Central Nervous System Neoplasms/mortality , Aged , Methotrexate/therapeutic use , Methotrexate/administration & dosage , Adult , Lymphoma/drug therapy , Lymphoma/mortality , Progression-Free Survival , Treatment Outcome , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects
11.
Malar J ; 23(1): 145, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741094

ABSTRACT

A single 300 mg dose of tafenoquine (an 8-aminoquinoline), in combination with a standard 3-day course of chloroquine, is approved in several countries for the radical cure (prevention of relapse) of Plasmodium vivax malaria in patients aged ≥ 16 years. Despite this, questions have arisen on the optimal dose of tafenoquine. Before the availability of tafenoquine, a 3-day course of chloroquine in combination with the 8-aminoquinoline primaquine was the only effective radical cure for vivax malaria. The World Health Organization (WHO)-recommended standard regimen is 14 days of primaquine 0.25 mg/kg/day or 7 days of primaquine 0.5 mg/kg/day in most regions, or 14 days of primaquine 0.5 mg/kg/day in East Asia and Oceania, however the long treatment courses of 7 or 14 days may result in poor adherence and, therefore, low treatment efficacy. A single dose of tafenoquine 300 mg in combination with a 3-day course of chloroquine is an important advancement for the radical cure of vivax malaria in patients without glucose-6-phosphate dehydrogenase (G6PD) deficiency, as the use of a single-dose treatment will improve adherence. Selection of a single 300 mg dose of tafenoquine for the radical cure of P. vivax malaria was based on collective efficacy and safety data from 33 studies involving more than 4000 trial participants who received tafenoquine, including over 800 subjects who received the 300 mg single dose. The safety profile of single-dose tafenoquine 300 mg is similar to that of standard-dosage primaquine 0.25 mg/kg/day for 14 days. Both primaquine and tafenoquine can cause acute haemolytic anaemia in individuals with G6PD deficiency; severe haemolysis can lead to anaemia, kidney damage, and, in some cases, death. Therefore, relapse prevention using an 8-aminoquinoline must be balanced with the need to avoid clinical haemolysis associated with G6PD deficiency. To minimize this risk, the WHO recommends G6PD testing for all individuals before the administration of curative doses of 8-aminoquinolines. In this article, the authors review key efficacy and safety data from the pivotal trials of tafenoquine and argue that the currently approved dose represents a favourable benefit-risk profile.


Subject(s)
Aminoquinolines , Antimalarials , Malaria, Vivax , Malaria, Vivax/drug therapy , Aminoquinolines/administration & dosage , Aminoquinolines/adverse effects , Aminoquinolines/therapeutic use , Humans , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Antimalarials/adverse effects , Primaquine/administration & dosage , Primaquine/therapeutic use , Primaquine/adverse effects , Risk Assessment , Treatment Outcome , Drug Therapy, Combination , Plasmodium vivax/drug effects , Chloroquine/therapeutic use , Chloroquine/adverse effects , Chloroquine/administration & dosage
12.
Arthroscopy ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38719177

ABSTRACT

PURPOSE: The purpose of this study was to evaluate the effectiveness of Marrow stimulation (MS) versus biphasic scaffold loaded with autologous cartilage (Scaffold) in treating focal osteochondral lesions of the knee. METHODS: 54 patients with symptomatic focal chondral or osteochondral lesion in the knee were randomized to either the Scaffold group or the MS group. International Knee Documentation Committee (IKDC) subjective score, the Knee Injury Osteoarthritis Outcome Score (KOOS), and Magnetic Resonance Imaging (MRI) were assessed preoperatively, and at one and two years postoperatively to compare treatment outcomes. Biopsy and second-look arthroscopy were performed one year postoperatively for consenting patients. RESULTS: There were 27 patients (Mean age 31.33 ± 10.95) in the Scaffold group, and 27 patients (31.74 ± 11.44) in the MS group. The scaffold group and the MS group both included 23 patients with lesions ≤12.5 × 12.5 mm2 mm in size. Additionally, each group had 4 patients with lesions between than 12.5 × 12.5 mm2 and ≤ 12.5 × 25 mm2. Both interventions achieved significant improvement in clinical outcome scores at two years. The Scaffold group had higher IKDC score than the MS group at two years (93.85 ± 9.55 vs 92.11 ± 9.84) and in the Symptoms/stiffness and Sport/recreation subscales of KOOS at two years (96.57 ± 5.97 vs 93.57 ± 6.52, P < 0.05) and (90.2 ± 17.76 vs 82.8 ± 16.08, P < 0.05). CONCLUSION: The use of biphasic scaffold loaded with autologous cartilage in treating focal osteochondral lesions demonstrates superior clinical outcomes and better cartilage refill on MRI at the two-year follow-up compared to marrow stimulation.

13.
Environ Sci Technol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712532

ABSTRACT

Nanopolystyrene (NPS), a frequently employed nanoplastic, is an emerging environmental contaminant known to cause neurotoxicity in various organisms. However, the potential for transgenerational neurotoxic effects, especially from photoaged NPS (P-NPS), remains underexplored. This study investigated the aging of virgin NPS (V-NPS) under a xenon lamp to simulate natural sunlight exposure, which altered the physicochemical characteristics of the NPS. The parental generation (P0) of Caenorhabditis elegans was exposed to environmental concentrations (0.1-100 µg/L) of V-NPS and P-NPS, with subsequent offspring (F1-F4 generations) cultured under NPS-free conditions. Exposure to 100 µg/L P-NPS resulted in more pronounced deterioration in locomotion behavior in the P0 generation compared to V-NPS; this deterioration persisted into the F1-F2 generations but returned to normal in the F3-F4 generations. Additionally, maternal exposure to P-NPS damaged dopaminergic, glutamatergic, and serotonergic neurons in subsequent generations. Correspondingly, there was a significant decrease in the levels of dopamine, glutamate, and serotonin, associated with reduced expression of neurotransmission-related genes dat-1, eat-4, and tph-1 in the P0 and F1-F2 generations. Further analysis showed that the effects of P-NPS on locomotion behavior were absent in subsequent generations of eat-4(ad572), tph-1(mg280), and dat-1(ok157) mutants, highlighting the pivotal roles of these genes in mediating P-NPS-induced transgenerational neurotoxicity. These findings emphasize the crucial role of neurotransmission in the transgenerational effects of P-NPS on locomotion behavior, providing new insights into the environmental risks associated with exposure to photoaged nanoplastics.

15.
Mol Psychiatry ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724566

ABSTRACT

Psychiatric disorders are highly heritable yet polygenic, potentially involving hundreds of risk genes. Genome-wide association studies have identified hundreds of genomic susceptibility loci with susceptibility to psychiatric disorders; however, the contribution of these loci to the underlying psychopathology and etiology remains elusive. Here we generated deep human brain proteomics data by quantifying 11,608 proteins across 268 subjects using 11-plex tandem mass tag coupled with two-dimensional liquid chromatography-tandem mass spectrometry. Our analysis revealed 788 cis-acting protein quantitative trait loci associated with the expression of 883 proteins at a genome-wide false discovery rate <5%. In contrast to expression at the transcript level and complex diseases that are found to be mainly influenced by noncoding variants, we found protein expression level tends to be regulated by non-synonymous variants. We also provided evidence of 76 shared regulatory signals between gene expression and protein abundance. Mediation analysis revealed that for most (88%) of the colocalized genes, the expression levels of their corresponding proteins are regulated by cis-pQTLs via gene transcription. Using summary data-based Mendelian randomization analysis, we identified 4 proteins and 19 genes that are causally associated with schizophrenia. We further integrated multiple omics data with network analysis to prioritize candidate genes for schizophrenia risk loci. Collectively, our findings underscore the potential of proteome-wide linkage analysis in gaining mechanistic insights into the pathogenesis of psychiatric disorders.

16.
Front Aging Neurosci ; 16: 1333289, 2024.
Article in English | MEDLINE | ID: mdl-38699559

ABSTRACT

Background: Linear associations between circulating insulin-like growth factor-1 (IGF-1) levels and Parkinson's disease (PD) have been evidenced in observational studies. Yet, the causal relationship between IGF-1 levels and PD remains obscure. We conducted Mendelian randomization to examine the correlation between genetically predicted IGF-1 levels and PD. Methods: By reviewing genome-wide association studies (GWAS) that are publicly accessible, we uncovered SNPs linked to both serum concentrations of IGF-1 and PD. A two-sample Mendelian randomization (MR) analysis was carried out to evaluate the individual effect of IGF-1 on PD. Results: In a primary causal effects model in MR analysis, employing the inverse-variance weighted (IVW) method, IGF-1 levels exhibited a notable association with the risk of PD (OR, 1.020, 95% CI, 1.003-1.038, p = 0.0215). Multiple evaluations revealed that horizontal pleiotropy was improbable to distort the main results (MR-Egger: P PD intercept =0.719), and no bias was detected by leave-one-out analysis. Conclusion: This study unearthed evidence indicating that heightened IGF-1 levels might be causally correlated with an increased risk of PD.

17.
Cogn Neurodyn ; 18(2): 357-370, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38699605

ABSTRACT

Recognizing familiar faces holds great value in various fields such as medicine, criminal investigation, and lie detection. In this paper, we designed a Complex Trial Protocol-based familiar and unfamiliar face recognition experiment that using self-face information, and collected EEG data from 147 subjects. A novel neural network-based method, the EEG-based Face Recognition Model (EEG-FRM), is proposed in this paper for cross-subject familiar/unfamiliar face recognition, which combines a multi-scale convolutional classification network with the maximum probability mechanism to realize individual face recognition. The multi-scale convolutional neural network extracts temporal information and spatial features from the EEG data, the attention module and supervised contrastive learning module are employed to promote the classification performance. Experimental results on the dataset reveal that familiar face stimuli could evoke significant P300 responses, mainly concentrated in the parietal lobe and nearby regions. Our proposed model achieved impressive results, with a balanced accuracy of 85.64%, a true positive rate of 73.23%, and a false positive rate of 1.96% on the collected dataset, outperforming other compared methods. The experimental results demonstrate the effectiveness and superiority of our proposed model.

18.
Phys Rev Lett ; 132(16): 161901, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701481

ABSTRACT

We present measurements of the Born cross sections for the processes e^{+}e^{-}→ωχ_{c1} and ωχ_{c2} at center-of-mass energies sqrt[s] from 4.308 to 4.951 GeV. The measurements are performed with data samples corresponding to an integrated luminosity of 11.0 fb^{-1} collected with the BESIII detector operating at the Beijing Electron Positron Collider storage ring. Assuming the e^{+}e^{-}→ωχ_{c2} signals come from a single resonance, the mass and width are determined to be M=(4413.6±9.0±0.8) MeV/c^{2} and Γ=(110.5±15.0±2.9) MeV, respectively, which is consistent with the parameters of the well-established resonance ψ(4415). In addition, we also use one single resonance to describe the e^{+}e^{-}→ωχ_{c1} line shape and determine the mass and width to be M=(4544.2±18.7±1.7) MeV/c^{2} and Γ=(116.1±33.5±1.7) MeV, respectively. The structure of this line shape, observed for the first time, requires further understanding.

19.
Environ Pollut ; : 124062, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38701963

ABSTRACT

The leaching process of uranium tailings is a typical water-rock interaction. The release of 226Ra from uranium tailings depends on the nuclides outside the intrinsic properties of uranium tailings on the one hand, and is influenced by the water medium on the other. In this paper, a uranium tailings repository in southern China was used as a research object, and uranium tailings at different depths were collected by drilling samples and mixed to analyse the 226Ra occurrence states. Static dissolution leaching experiments of 226Ra under different pH conditions, solid-liquid ratio conditions, and ionic strength conditions were carried out, and the adsorption and desorption behaviours of 226Ra in five representative stratigraphic media were investigated. The results show that 226Ra has a strong adsorption capacity in representative strata, with adsorption distribution coefficient Kd values ranging from 1.07E+02 to 1.29E+03 (mL/g) and desorption distribution coefficients ranging from 4.97E+02 to 2.71E+03 (mL/g), but the adsorption is reversible. The 226Ra in uranium tailings exists mainly in the residual and water-soluble states, and the release of 226Ra from uranium tailings under different conditions is mainly from the water-soluble and exchangeable state fractions. Low pH conditions, low solid-liquid ratio conditions and high ionic strength conditions are favourable to the release of 226Ra from uranium tailings, so the release of 226Ra from uranium tailings can be reduced by means of adjusting the pH in the tailings and setting up a water barrier. The results of this research have important guiding significance for the management of existing uranium tailings ponds and the control of 226Ra migration in groundwater, which is conducive to guaranteeing the long-term safety, stability and sustainability of uranium mining sites.

20.
Cell Calcium ; 121: 102895, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38703416

ABSTRACT

Liver fibrosis is characterized by excessive deposition of extracellular matrix (ECM) as a wound healing process. Activated hepatic stellate cells (HpSCs) are the major producer of the ECM and play a central role in liver fibrogenesis. It has been widely accepted that elimination of activated HpSCs or reversion to a quiescent state can be a feasible strategy for resolving the disease, further highlighting the urgent need for novel therapeutic targets. Calreticulin (CRT) is a molecular chaperone that normally resides in the endoplasmic reticulum (ER), important in protein folding and trafficking through the secretory pathway. CRT also plays a critical role in calcium (Ca2+) homeostasis, with its Ca2+ storage capacity. In the current study, we aimed to demonstrate its function in directing HpSC activation. In a mouse liver injury model, CRT was up-regulated in HpSCs. In cellular experiments, we further showed that this activation was through modulating the canonical TGF-ß signaling. As down-regulation of CRT in HpSCs elevated intracellular Ca2+ levels through a form of Ca2+ influx, named store-operated Ca2+ entry (SOCE), we examined whether moderating SOCE affected TGF-ß signaling. Interestingly, blocking SOCE had little effect on TGF-ß-induced gene expression. In contrast, inhibition of ER Ca2+ release using the inositol trisphosphate receptor inhibitor 2-APB increased TGF-ß signaling. Treatment with 2-APB did not alter SOCE but decreased intracellular Ca2+ at the basal level. Indeed, adjusting Ca2+ concentrations by EGTA or BAPTA-AM chelation further enhanced TGF-ß-induced signaling. Our results suggest a crucial role of CRT in the liver fibrogenic process through modulating Ca2+ concentrations and TGF-ß signaling in HpSCs, which may provide new information and help advance the current discoveries for liver fibrosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...