Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(18): e2310065, 2024 May.
Article in English | MEDLINE | ID: mdl-38447147

ABSTRACT

According to the latest evidence, the microbial metabolite Urolithin A (UA), known for its role in promoting cellular health, modulates CD8+ T cell-mediated antitumor activity. However, the direct target protein of UA and its underlying mechanism remains unclear. Here, this research identifies ERK1/2 as the specific target crucial for UA-mediated CD8+ T cell activation. Even at low doses, UA markedly enhances the persistence and effector functions of primary CD8+ cytotoxic T lymphocytes (CTLs) and human chimeric antigen receptor (CAR) T cells both in vitro and in vivo. Mechanistically, UA interacts directly with ERK1/2 kinases, enhancing their activation and subsequently facilitating T cell activation by engaging ULK1. The UA-ERK1/2-ULK1 axis promotes autophagic flux in CD8+ CTLs, enhancing cellular metabolism and maintaining reactive oxygen species (ROS) levels, as evidenced by increased oxygen consumption and extracellular acidification rates. UA-treated CD8+ CTLs also display elevated ATP levels and enhanced spare respiratory capacity. Overall, UA activates ERK1/2, inducing autophagy and metabolic adaptation, showcasing its potential in tumor immunotherapy and interventions for diseases involving ERKs.


Subject(s)
Autophagy-Related Protein-1 Homolog , CD8-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Mice , Humans , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , MAP Kinase Signaling System/immunology , Coumarins/pharmacology , Coumarins/metabolism , Disease Models, Animal , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism , Mice, Inbred C57BL , Autophagy/immunology
2.
Sci Transl Med ; 15(722): eadg6752, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37967204

ABSTRACT

T cell immunoglobulin and mucin-containing molecule 3 (Tim-3), expressed in dysfunctional and exhausted T cells, has been widely acknowledged as a promising immune checkpoint target for tumor immunotherapy. Here, using a strategy combining virtual and functional screening, we identified a compound named ML-T7 that targets the FG-CC' cleft of Tim-3, a highly conserved binding site of phosphatidylserine (PtdSer) and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). ML-T7 enhanced the survival and antitumor activity of primary CD8+ cytotoxic T lymphocytes (CTLs) and human chimeric antigen receptor (CAR) T cells and reduced their exhaustion in vitro and in vivo. In addition, ML-T7 promoted NK cells' killing activity and DC antigen-presenting capacity, consistent with the reported activity of Tim-3. ML-T7 strengthened DCs' functions through both Tim-3 and Tim-4, which is consistent with the fact that Tim-4 contains a similar FG-CC' loop. Intraperitoneal dosing of ML-T7 showed comparable tumor inhibitory effects to the Tim-3 blocking antibody. ML-T7 reduced syngeneic tumor progression in both wild-type and Tim-3 humanized mice and alleviated the immunosuppressive microenvironment. Furthermore, combined ML-T7 and anti-PD-1 therapy had greater therapeutic efficacy than monotherapy in mice, supporting further development of ML-T7 for tumor immunotherapy. Our study demonstrates a potential small molecule for selectively blocking Tim-3 and warrants further study.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Neoplasms , Humans , Animals , Mice , Hepatitis A Virus Cellular Receptor 2/metabolism , CD8-Positive T-Lymphocytes , T-Lymphocytes, Cytotoxic/metabolism , Neoplasms/therapy , Immunotherapy , Tumor Microenvironment
3.
Antiviral Res ; 217: 105680, 2023 09.
Article in English | MEDLINE | ID: mdl-37494980

ABSTRACT

Macrophages display functional phenotypic plasticity. Hepatitis B virus (HBV) infection induces polarizations of liver macrophages either to M1-like pro-inflammatory phenotype or to M2-like anti-inflammatory phenotype. Gamma-aminobutyric acid (GABA) signaling exists in various non-neuronal cells including hepatocytes and some immune cells. Here we report that macrophages express functional GABAergic signaling components and activation of type A GABA receptors (GABAARs) promotes M2-polarization thus advancing HBV replication. Notably, intraperitoneal injection of GABA or the GABAAR agonist muscimol increased HBV replication in HBV-carrier mice that were generated by hydrodynamical injection of adeno-associated virus/HBV1.2 plasmids (pAAV/HBV1.2). The GABA-augmented HBV replication in HBV-carrier mice was significantly reduced by the GABAAR inhibitor picrotoxin although picrotoxin had no significant effect on serum HBsAg levels in control HBV-carrier mice. Depletion of liver macrophages by liposomal clodronate treatment also significantly reduced the GABA-augmented HBV replication. Yet adoptive transfer of liver macrophages isolated from GABA-treated donor HBV-carrier mice into the liposomal clodronate-pretreated recipient HBV-carrier mice restored HBV replication. Moreover, GABA or muscimol treatment increased the expression of "M2" cytokines in macrophages, but had no direct effect on HBV replication in the HepG2.2.15 cells, HBV1.3-transfected Huh7, HepG2, or HepaRG cells, or HBV-infected Huh7-NTCP cells. Taken together, these results suggest that increasing GABA signaling in the liver promotes HBV replication in HBV-carrier mice by suppressing the immunity of liver macrophages, but not by increasing the susceptibility of hepatocytes to HBV infection. Our study shows that a previously unknown GABAergic system in liver macrophage has an essential role in HBV replication.


Subject(s)
Hepatitis B virus , Hepatitis B , Mice , Animals , Hepatitis B virus/genetics , Muscimol/pharmacology , Clodronic Acid/pharmacology , Picrotoxin/pharmacology , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacology , Macrophages/metabolism , Virus Replication
4.
iScience ; 26(6): 106871, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37275527

ABSTRACT

Emerging evidence shows that pancreatic ß-cell function and quality are key determinants in the progression of type 2 diabetes (T2D). The transcription factor zinc finger homeobox 2 (Zhx2) is involved in proliferation and development of multiple cells. However, the exact role of Zhx2 in ß-cells and T2D remains completely unknown. Here, we report that Zhx2 orchestrates ß-cell mass and function by regulating paired box protein pax-6 (Pax6). We found that ß-cell-specific knockout Zhx2 (Zhx2BKO) mice showed a decrease in ß-cell proliferation and glucose homeostasis. Under prediabetic and diabetic conditions, we discovered glucose intolerance in both Zhx2BKO-HFD mice and Zhx2BKO-db/db mice, with reduced ß-cell mass and insulin secretion. Mechanistically, we demonstrated that Zhx2 targeted the Pax6 promoter region (-1740∼-1563; -862∼-559; -251∼+75), enhanced promoter activity. Overall, Zhx2 maintains ß-cell function by transcriptionally regulating Pax6, which provides a therapeutic target for diabetes intervention.

5.
Cell Death Differ ; 30(6): 1488-1502, 2023 06.
Article in English | MEDLINE | ID: mdl-37024604

ABSTRACT

CD4+ T helper (Th) cell differentiation is regulated by lineage-specific expression of transcription factors, which is tightly associated with epigenetic modifications, including histone acetylation and methylation. However, the factors regulating histone modifications involved in Th cell differentiation remain largely unknown. We herein demonstrated a critical role of Cullin 4B (CUL4B) in restricting Th1 and Th2 cell differentiation. CUL4B, which is assembled into the CUL4B-RING E3 ligase (CRL4B) complex, participates in various physiological and developmental processes through epigenetic repression of transcription. Depletion of Cul4b in CD4+ T cells enhanced Th1 and Th2 cell differentiation. In vivo, an aggravated Th2 response caused by the absence of CUL4B was observed in a murine asthma model. Mechanistically, the CRL4B complex promoted monoubiquitination at H2AK119 (H2AK119ub1) and polycomb repressive complex 2 (PRC2)-mediated trimethylation at H3K27 (H3K27me3) at Tbx21 and Maf and consequently repressed their expression during Th cell differentiation. Our study suggests that CRL4B complex-mediated H2AK119ub1 deposition functions to prevent the aberrant expression of Th1 and Th2 lineage-specific genes.


Subject(s)
Epigenesis, Genetic , Polycomb Repressive Complex 2 , Animals , Mice , Ubiquitination , Methylation , Cell Differentiation , Polycomb Repressive Complex 2/metabolism
7.
Adv Sci (Weinh) ; 9(16): e2103135, 2022 05.
Article in English | MEDLINE | ID: mdl-35398991

ABSTRACT

Covalently closed circular DNA (cccDNA) is the transcriptional template of hepatitis B virus (HBV), which interacts with both host and viral proteins to form minichromosome in the nucleus and is resistant to antiviral agents. Identification of host factors involved in cccDNA transcriptional regulation is expected to prove a new venue for HBV therapy. Recent evidence suggests the involvement of long noncoding RNAs (lncRNAs) in mediating the interaction of host factors with various viruses, however, lncRNAs that HBV targets and represses cccDNA transcription have not been fully elucidated. Here, the authors identified LINC01431 as a novel host restriction factor for HBV transcription. Mechanically, LINC01431 competitively bound with type I protein arginine methyltransferase (PRMT1) to block the HBx-mediated PRMT1 ubiquitination and degradation. Consequently, LINC01431 increased the occupancy of PRMT1 on cccDNA, leading to enhanced H4R3me2a modification and reduced acetylation of cccDNA-bound histones, thereby repressing cccDNA transcription. In turn, to facilitate viral replication, HBV transcriptionally repressed LINC01431 expression by HBx-mediated repression of transcription factor Zinc fingers and homeoboxes 2 (ZHX2). Collectively, the study demonstrates LINC01431 as a novel epigenetic regulator of cccDNA minichromosome and highlights a feedback loop of HBx-LINC01431-PRMT1 in HBV replication, which provides potential therapeutic targets for HBV treatment.


Subject(s)
Hepatitis B virus , RNA, Long Noncoding , DNA, Circular/genetics , DNA, Circular/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Hepatitis B virus/genetics , Histones/genetics , Histones/metabolism , Methylation , RNA, Long Noncoding/genetics
9.
J Pathol ; 252(4): 358-370, 2020 12.
Article in English | MEDLINE | ID: mdl-32770671

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Lipogenesis has been considered as a critical player in HCC initiation and progression. However, the underlying mechanism is still not fully understood. Here, we identified zinc fingers and homeoboxes 2 (ZHX2), an HCC-associated tumor suppressor, as an important repressor of de novo lipogenesis. Ectopic expression of ZHX2 significantly inhibited de novo lipogenesis in HCC cells and decreased expression of FASN, ACL, ACC1, and SCD1. In accordance with this, ZHX2 was negatively associated with SREBP1c, the master regulator of de novo lipogenesis, in HCC cell lines and human specimens. Results from silencing and overexpression demonstrated that ZHX2 inhibited de novo lipogenesis and consequent HCC progression via repression of SREBP1c. Furthermore, treatment with the SREBP1c inhibitor fatostatin dampened the spontaneous formation of tumors in liver-specific Zhx2 knockout mice. Mechanistically, ZHX2 increased expression of miR-24-3p transcriptionally, which targeted SREBP1c and led to its degradation. In conclusion, our data suggest a novel mechanism through which ZHX2 suppresses HCC progression, which may provide a new strategy for the treatment of HCC. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Homeodomain Proteins/metabolism , Lipogenesis/genetics , Liver Neoplasms/metabolism , MicroRNAs/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Transcription Factors/metabolism , Adult , Aged , Animals , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , Fatty Acids, Nonesterified/metabolism , Female , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Homeodomain Proteins/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Mice, Knockout , MicroRNAs/genetics , Middle Aged , Pyridines/pharmacology , Sterol Regulatory Element Binding Protein 1/antagonists & inhibitors , Sterol Regulatory Element Binding Protein 1/genetics , Thiazoles/pharmacology , Transcription Factors/genetics , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...