Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(24): 25552-25564, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38096149

ABSTRACT

Photomemristors have been regarded as one of the most promising candidates for next-generation hardware-based neuromorphic computing due to their potentials of fast data transmission and low power consumption. However, intriguingly, so far, photomemristors seldom display truly nonvolatile memory characteristics with high light sensitivity. Herein, we demonstrate ultrasensitive photomemristors utilizing two-dimensional (2D) Ruddlesden-Popper (RP) perovskites with a highly polar donor-acceptor-type push-pull organic cation, 4-(5-(2-aminoethyl)thiophen-2-yl)benzonitrile+ (EATPCN+), as charge-trapping layers. High linearity and almost zero-decay retention are observed in (EATPCN)2PbI4 devices, which are very distinct from that of the traditional 2D RP perovskite devices consisting of nonpolar organic cations, such as phenethylamine+ (PEA+) and octylamine+ (OA+), and traditional 3D perovskite devices consisting of methylamine+ (MA+). The 2-fold advantages, including desirable spatial crystal arrangement and engineered energetic band alignment, clarify the mechanism of superior performance in (EATPCN)2PbI4 devices. The optimized (EATPCN)2PbI4 photomemristor also shows a memory window of 87.9 V and an on/off ratio of 106 with a retention time of at least 2.4 × 105 s and remains unchanged after >105 writing-reading-erasing-reading endurance cycles. Very low energy consumptions of 1.12 and 6 fJ for both light stimulation and the reading process of each status update are also demonstrated. The extremely low power consumption and high photoresponsivity were simultaneously achieved. The high photosensitivity surpasses that of a state-of-the-art commercial pulse energy meter by several orders of magnitude. With their outstanding linearity and retention, rabbit images have been rebuilt by (EATPCN)2PbI4 photomemristors, which truthfully render the image without fading over time. Finally, by utilizing the powerful ∼8 bits of nonvolatile potentiation and depression levels of (EATPCN)2PbI4 photomemristors, the accuracies of the recognition tasks of CIFAR-10 image classification and MNIST handwritten digit classification have reached 89% and 94.8%, respectively. This study represents the first report of utilizing a functional donor-acceptor type of organic cation in 2D RP perovskites for high-performance photomemristors with characteristics that are not found in current halide perovskites.

2.
ACS Appl Mater Interfaces ; 15(37): 44033-44042, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37694918

ABSTRACT

Three organic conjugated small molecules, DTA-DTPZ, Cz-DTPZ, and DTA-me-DTPZ comprising an antiaromatic 5,10-ditolylphenazine (DTPZ) core and electron-donating peripheral substituents with high HOMOs (-4.2 to -4.7 eV) and multiple reversible oxidative potentials are reported. The corresponding films sandwiched between two electrodes show unipolar and switchable hysteresis current-voltage (I-V) characteristics upon voltage sweeping, revealing the prominent features of nonvolatile memristor behaviors. The numerical simulation of the I-V curves suggests that the carriers generated by the oxidized molecules lead to the increment of conductance. However, the accumulated carriers tend to deteriorate the device endurance. The electroactive sites are fully blocked in the dimethylated molecule DTA-me-DTPZ, preventing the irreversible electrochemical reaction, thereby boosting the endurance of the memristor device over 300 cycles. Despite the considerable improvement in endurance, the decrement of on/off ratio from 105 to 101 after 250 cycles suggests that the excessive charge carriers (radical cations) remains a problem. Thus, a new strategy of doping an electron-deficient material, CN-T2T, into the unipolar active layer was introduced to further improve the device stability. The device containing DTA-me-DTPZ:CNT2T (1:1) blend as the active layer retained the endurance and on/off ratio (∼104) upon sweeping 300 cycles. The molecular designs and doping strategy demonstrate effective approaches toward more stable metal-free organic conjugated small-molecule memristors.

3.
ACS Nano ; 16(8): 12979-12990, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35815946

ABSTRACT

Recently, conductive-bridging memristors based on metal halides, such as halide perovskites, have been demonstrated as promising components for brain-inspired hardware-based neuromorphic computing. However, realizing devices that simultaneously fulfill all of the key merits (low operating voltage, high dynamic range, multilevel nonvolatile storage capability, and good endurance) remains a great challenge. Herein, we describe lead-free cesium halide memristors incorporating a MoOX interfacial layer as a type of conductive-bridging memristor. With this design, we obtained highly uniform and reproducible memristors that exhibited all-around resistive switching characteristics: ultralow operating voltages (<0.18 V), low variations (<30 mV), long retention times (>106 s), high endurance (>105, full on/off cycles), record-high on/off ratios (>1010, smaller devices having areas <5 × 10-4 mm2), fast switching (<200 ns), and multilevel programming abilities (>64 states). With these memristors, we successfully implemented stateful logic functions in a reconfigurable architecture and accomplished a high classification accuracy (ca. 90%) in the simulated hand-written-digits classification task, suggesting their versatility in future in-memory computing applications. In addition, we exploited the room-temperature fabrication of the devices to construct a fully functional three-dimensional stack of memristors, which demonstrates their potential of high-density integration desired for data-intensive neuromorphic computing. High-performance, environmentally friendly cesium halide memristors provide opportunities toward next-generation electronics beyond von Neumann architectures.

SELECTION OF CITATIONS
SEARCH DETAIL
...