Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
ACS Nano ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771969

ABSTRACT

Hydrogen obtained from electrochemical water splitting is the most promising clean energy carrier, which is hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Thus, the development of an efficient OER electrocatalyst using nonprecious 3d transition elements is desirable. Multielement synergistic effect and lattice oxygen oxidation are two well-known mechanisms to enhance the OER activity of catalysts. The latter is generally related to the high valence state of 3d transition elements leading to structural destabilization under the OER condition. We have found that Al doping in nanosheet Ni-Fe hydroxide exhibits 2-fold advantage: (1) a strong enhanced OER activity from 277 mV to 238 mV at 10 mA cm-2 as the Ni valence state increases from Ni3.58+ to Ni3.79+ observed from in situ X-ray absorption spectra. (2) Operational stability is strengthened, while weakness is expected since the increased NiIV content with 3d8L2 (L denotes O 2p hole) would lead to structural instability. This contradiction is attributed to a reduced lattice oxygen contribution to the OER upon Al doping, as verified through in situ Raman spectroscopy, while the enhanced OER activity is interpreted as an enormous gain in exchange energy of FeIV-NiIV, facilitated by their intersite hopping. This study reveals a mechanism of Fe-Ni synergy effect to enhance OER activity and simultaneously to strengthen operational stability by suppressing the contribution of lattice oxygen.

2.
Adv Sci (Weinh) ; : e2307397, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650173

ABSTRACT

Li-rich Mn-based layered oxides (LLO) hold great promise as cathode materials for lithium-ion batteries (LIBs) due to their unique oxygen redox (OR) chemistry, which enables additional capacity. However, the LLOs face challenges related to the instability of their OR process due to the weak transition metal (TM)-oxygen bond, leading to oxygen loss and irreversible phase transition that results in severe capacity and voltage decay. Herein, a synergistic electronic regulation strategy of surface and interior structures to enhance oxygen stability is proposed. In the interior of the materials, the local electrons around TM and O atoms may be delocalized by surrounding Mo atoms, facilitating the formation of stronger TM─O bonds at high voltages. Besides, on the surface, the highly reactive O atoms with lone pairs of electrons are passivated by additional TM atoms, which provides a more stable TM─O framework. Hence, this strategy stabilizes the oxygen and hinders TM migration, which enhances the reversibility in structural evolution, leading to increased capacity and voltage retention. This work presents an efficient approach to enhance the performance of LLOs through surface-to-interior electronic structure modulation, while also contributing to a deeper understanding of their redox reaction.

3.
Small Methods ; : e2400178, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686689

ABSTRACT

Reversible solid oxide cells (rSOCs) have significant potential as efficient energy conversion and storage systems. Nevertheless, the practical application of their conventional air electrodes, such as La0.8Sr0.2MnO3-δ (LSM), Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), and PrBa0.8Ca0.2Co2O5+δ (PBCC), remains unsatisfactory due to interface delamination during prolonged electrochemical operation. Using micro-focusing X-ray absorption spectroscopy (µ-XAS), a decrease (increase) in the co-valence state from the electrode surface to the electrode/electrolyte interface is observed, leading to the above delamination. Utilizing the one-pot method to incorporate an oxygen-vacancy-enriched CeO2 electrode into these air electrodes, the uniform distribution of the Co valence state is observed, alleviating the structural delamination. PBCC-CeO2 electrodes exhibited a degradation rate of 0.095 mV h-1 at 650 °C during a nearly 500-h test as compared with 0.907 mV h-1 observed during the 135-h test for PBCC. Additionally, a remarkable increase in electrolysis current density from 636 to 934 mA cm-2 under 1.3 V and a maximum power density from 912 to 989 mW cm-2 upon incorporating CeO2 into PBCC is also observed. BSCF-CeO2 and LSM-CeO2 also show enhanced electrochemical performance and prolonged stability as compared to BSCF and LSM. This work offers a strategy to mitigate the structural delamination of conventional electrodes to boost the performance of rSOCs.

4.
Inorg Chem ; 63(13): 5924-5930, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38511934

ABSTRACT

A transition-metal oxide of PbCu3Mn4O12 was prepared at 1523 K and 10 GPa. An A-site-ordered quadruple perovskite structure with the space group Im3̅ is assigned for this compound. Based on bond-valence-sum calculations and X-ray absorption spectroscopy, the charge combination is determined to be PbCu32+Mn44+O12. Due to Cu2+(↑)-Mn4+(↓) antiferromagnetic coupling, a near-room-temperature ferrimagnetic phase transition is observed at approximately 287 K. PbCu3Mn4O12 exhibits a semiconducting electric transport property with the energy band gap Eg ≈ 0.2 eV. In addition, considerable low-field magnetoresistance effects are observed at lower temperatures. This study provides an intrinsic near-room-temperature ferrimagnetic semiconductor that exhibits potential applications in next-generation spintronic devices.

5.
Adv Mater ; : e2309172, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38391035

ABSTRACT

X-ray circular dichroism, arising from the contrast in X-ray absorption between opposite photon helicities, serves as a spectroscopic tool to measure the magnetization of ferromagnetic materials and identify the handedness of chiral crystals. Antiferromagnets with crystallographic chirality typically lack X-ray magnetic circular dichroism because of time-reversal symmetry, yet exhibit weak X-ray natural circular dichroism. Here, the observation of giant natural circular dichroism in the Ni L3-edge X-ray absorption of Ni3TeO6 is reported, a polar and chiral antiferromagnet with effective time-reversal symmetry. To unravel this intriguing phenomenon, a phenomenological model is proposed that classifies the movement of photons in a chiral crystal within the same symmetry class as that of a magnetic field. The coupling of X-ray polarization with the induced magnetization yields giant X-ray natural circular dichroism, revealing typical ferromagnetic behaviors allowed by the symmetry in an antiferromagnet, i.e., the altermagnetism of Ni3TeO6. The findings provide evidence for the interplay between magnetism and crystal chirality in natural optical activity. Additionally, the first example of a new class of magnetic materials exhibiting circular dichroism is established with time-reversal symmetry.

6.
Inorg Chem ; 63(7): 3499-3505, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38320745

ABSTRACT

An AA'3B2B'2O12-type quadruple perovskite oxide of CaCu3Cr2Re2O12 was synthesized at 18 GPa and 1373 K. Both an A- and B-site ordered quadruple perovskite crystal structure was observed, with the space group Pn-3. The valence states are verified to be CaCu32+Cr23+Re25+O12 by bond valence sum calculations and synchrotron X-ray absorption spectroscopy. The spin interaction among Cu2+, Cr3+, and Re5+ generates a ferrimagnetic transition with the Curie temperature (TC) at about 360 K. Moreover, electric transport properties and specific heat data suggest the presence of a half-metallic feature for this compound. The present study provides a promising quadruple perovskite oxide with above-room-temperature ferrimagnetism and possible half-metallic properties, which shows potential in the usage of spintronic devices.

7.
Nat Commun ; 15(1): 88, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167739

ABSTRACT

Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin-state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin-polarized Fe1-Ti pairs on monolithic titanium electrode that exhibits an attractive NH3 yield rate of 272,000 µg h-1 mgFe-1 and a high NH3 Faradic efficiency of 95.2% at -0.4 V vs. RHE, far superior to the counterpart with spin-depressed Fe1-Ti pairs (51000 µg h-1 mgFe-1) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow-through electrolyzer with a membrane-based NH3 recovery unit, the simultaneous nitrate reduction and NH3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment.

8.
Small ; 20(2): e2305219, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37658514

ABSTRACT

Materials with negative thermal expansion (NTE) attract significant research attention owing to their unique physical properties and promising applications. Although ferroelectric phase transitions leading to NTE are widely investigated, information on antiferroelectricity-induced NTE remains limited. In this study, single-crystal and polycrystalline Pb2 CoMoO6 samples are prepared at high pressure and temperature conditions. The compound crystallizes into an antiferroelectric Pnma orthorhombic double perovskite structure at room temperature owing to the opposite displacements dominated by Pb2+ ions. With increasing temperature to 400 K, a structural phase transition to cubic Fm-3m paraelectric phase occurs, accompanied by a sharp volume contraction of 0.41%. This is the first report of an antiferroelectric-to-paraelectric transition-induced NTE in Pb2 CoMoO6 . Moreover, the compound also exhibits remarkable NTE with an average volumetric coefficient of thermal expansion αV = -1.33 × 10-5 K-1 in a wide temperature range of 30-420 K. The as-prepared Pb2 CoMoO6 thus serves as a prototype material system for studying antiferroelectricity-induced NTE.

9.
Nat Nanotechnol ; 19(2): 208-218, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37798568

ABSTRACT

A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm-2), a high specific cathode capacity (203 mAh g-1), superior cycling stability (92% capacity retention after 200 cycles) and a good rate capability (93 mAh g-1 at 2C). This work also offers mechanistic insights into how to break through the limitation of using expensive cathodes (for example, Co-based) and coatings (for example, Nb-, Ta-, La- or Zr-based) while still achieving a high-energy ASSLB performance.

10.
Inorg Chem ; 62(51): 21233-21239, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38091505

ABSTRACT

CaCu3Mn2Te2O12 was synthesized using high-temperature and high-pressure conditions. The compound possesses an A- and B site ordered quadruple perovskite structure in Pn3̅ symmetry with the charge combination of CaCu32+Mn22+Te26+O12. A ferrimagnetic phase transition originating from the antiferromagnetic interaction between A' site Cu2+ and B site Mn2+ ions is found to occur at TC ≈ 100 K. CaCu3Mn2Te2O12 also shows insulating electric conductivity. Optical measurement demonstrates the energy bandgap to be about 1.9 eV, in agreement with the high B site degree of chemical order between Mn2+ and Te6+. The first-principles theoretical calculations confirm the Cu2+(↓)-Mn2+(↑) ferrimagnetic coupling as well as the insulating nature with an up-spin direct bandgap. The current CaCu3Mn2Te2O12 provides an intriguing example of an intrinsic ferrimagnetic insulator with promising applications in advanced spintronic devices.

11.
Small ; 19(46): e2302726, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37480195

ABSTRACT

The rational design of novel high-performance cathode materials for sodium-ion batteries is a challenge for the development of the renewable energy sector. Here, a new sodium-deficient NASICON phosphate, namely Na3.40 □0.60 Co0.5 Fe0.5 V(PO4 )3 , demonstrating the excellent electrochemical performance is reported. The presence of Co allows a third Na+ to participate in the reaction thus exhibiting a high reversible capacity of ≈155 mAh g-1 in the voltage range of 2.0-4.0 V versus Na+ /Na with a reversible single-phase mechanism and a small volume shrinkage of ≈5.97% at 4.0 V. 23 Na solid-state nuclear magnetic resonance (NMR) combined with ex situ X-ray diffraction (XRD) refinements provide evidence for a preferential Na+ insertion within the Na2 site. Furthermore, the enhanced sodium kinetics ascribed to Co-substitution is also confirmed in combination with electrochemical impedance spectroscopy (EIS), galvanostatic intermittent titration technique (GITT), and theoretical calculation.

12.
ACS Appl Mater Interfaces ; 15(25): 30060-30069, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37314432

ABSTRACT

Li-rich layered oxide (LLO) cathode materials with mixed cationic and anionic redox reactions display much higher specific capacity than other traditional layered oxide materials. However, the practical specific capacity of LLO during the first cycle in sulfide all-solid-state lithium-ion batteries (ASSLBs) is extremely low. Herein, the capacity contribution of each redox reaction in LLO during the first charging process is qualitatively and quantitatively analyzed by comprehensive electrochemical and structural measurements. The results demonstrate that the cationic redox of the LiTMO2 (TM = Ni, Co, Mn) phase is almost complete, while the anionic redox of the Li2MnO3 phase is seriously limited due to the sluggish transport kinetics and severe LLO/Li6PS5Cl interface reaction at high voltage. Therefore, the poor intrinsic conductivity and interface stability during the anionic redox jointly restrict the capacity release or delithiation/lithiation degree of LLO during the first cycle in sulfide ASSLBs. This study reveals the origin of the seriously limited anionic redox reaction in LLO, providing valuable guidance for the bulk and interface design of high-energy-density ASSLBs.

13.
Angew Chem Int Ed Engl ; 62(34): e202302664, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37349889

ABSTRACT

Lithium difluoro(oxalato) borate (LiDFOB) has been widely investigated in lithium-ion batteries (LIBs) owing to its advantageous thermal stability and excellent aluminum passivation property. However, LiDFOB tends to suffer from severe decomposition and generate a lot of gas species (e.g., CO2 ). Herein, a novel cyano-functionalized lithium borate salt, namely lithium difluoro(1,2-dihydroxyethane-1,1,2,2-tetracarbonitrile) borate (LiDFTCB), is innovatively synthesized as a highly oxidative-resistant salt to alleviate above dilemma. It is revealed that the LiDFTCB-based electrolyte enables LiCoO2 /graphite cells with superior capacity retention at both room and elevated temperatures (e.g., 80 % after 600 cycles) with barely any CO2 gas evolution. Systematic studies reveal that LiDFTCB tends to form thin and robust interfacial layers at both electrodes. This work emphasizes the crucial role of cyano-functionalized anions in improving cycle lifespan and safety of practical LIBs.

14.
Inorg Chem ; 62(23): 9139-9145, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37256851

ABSTRACT

α-CdFe2O4 stabilizes its normal spinel structure due to the covalent Cd-O bond, in which all the connections between adjacent FeO6 octahedral are edge-shared, forming a typical geometrically frustrated Fe3+ magnetic lattice. As the high-pressure methods were utilized, the post-spinel phase ß-CdFe2O4 with a CaFe2O4-type structure was synthesized at 8 GPa and 1373 K. The new polymorph has an orthorhombic structure with the space group Pnma and an 11.5% higher density than that of its normal spinel polymorph (α-CdFe2O4) synthesized at ambient conditions. The edge-shared FeO6 octahedra form zigzag S = 5/2 spin ladders along the b-axis dominating its low-dimensional magnetic properties at high temperatures and a long-range antiferromagnetic ordering with a high Néel temperature of TN1 = 350 K. Further, the rearrangement of magnetic ordering was found to occur around TN2 = 265 K, below which the competition of two phases or several couplings induce complex antiferromagnetic behaviors.

15.
Nat Commun ; 14(1): 2112, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055401

ABSTRACT

Designing efficient catalyst for the oxygen evolution reaction (OER) is of importance for energy conversion devices. The anionic redox allows formation of O-O bonds and offers higher OER activity than the conventional metal sites. Here, we successfully prepare LiNiO2 with a dominant 3d8L configuration (L is a hole at O 2p) under high oxygen pressure, and achieve a double ligand holes 3d8L2 under OER since one electron removal occurs at O 2p orbitals for NiIII oxides. LiNiO2 exhibits super-efficient OER activity among LiMO2, RMO3 (M = transition metal, R = rare earth) and other unary 3d catalysts. Multiple in situ/operando spectroscopies reveal NiIII→NiIV transition together with Li-removal during OER. Our theory indicates that NiIV (3d8L2) leads to direct O-O coupling between lattice oxygen and *O intermediates accelerating the OER activity. These findings highlight a new way to design the lattice oxygen redox with enough ligand holes created in OER process.

16.
Nat Commun ; 14(1): 529, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36725864

ABSTRACT

The production of ecologically compatible fuels by electrochemical water splitting is highly desirable for modern industry. The Zhang-Rice singlet is well known for the superconductivity of high-temperature superconductors cuprate, but is rarely known for an electrochemical catalyst. Herein, we observe two steps of surface reconstruction from initial catalytic inactive Cu1+ in hydrogen treated Cu2O to Cu2+ state and further to catalytic active Zhang-Rice singlet state during the oxygen evolution reaction for water splitting. The hydrogen treated Cu2O catalyst exhibits a superior catalytic activity and stability for water splitting and is an efficient rival of other 3d-transition-metal catalysts. Multiple operando spectroscopies indicate that Zhang-Rice singlet is real active species, since it appears only under oxygen evolution reaction condition. This work provides an insight in developing an electrochemical catalyst from catalytically inactive materials and improves understanding of the mechanism of a Cu-based catalyst for water oxidation.

17.
Inorg Chem ; 61(42): 16929-16935, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36214839

ABSTRACT

The B-site Fe/Os ordered and disordered quadruple perovskite oxides CaCu3Fe2Os2O12 were synthesized under different high-pressure and high-temperature conditions. The B-site ordered CaCu3Fe2Os2O12 is a system with a very high ferrimagnetic ordering temperature of 580 K having the Cu2+(↑)Fe3+(↑)Os5+(↓) charge and spin arrangement. In comparison, the highly disordered CaCu3Fe2Os2O12 has a reduced magnetic transition temperature of about 350 K. The Cu2+Fe3+Os5+ charge combination remains the same without any sign of changes in the valence state of the constituent ions. Although the average net moments of each sublattice are reduced, the average ferrimagnetic spin arrangement is unaltered. The robustness of the basic magnetic properties of CaCu3Fe2Os2O12 against site disorder may be taken as an indication of the tendency to maintain the short-range order of the atomic constituents.

18.
Adv Sci (Weinh) ; 9(34): e2204800, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36266984

ABSTRACT

Urea oxidation reaction (UOR) with a low equilibrium potential offers a promising route to replace the oxygen evolution reaction for energy-saving hydrogen generation. However, the overpotential of the UOR is still high due to the complicated 6e- transfer process and adsorption/desorption of intermediate products. Herein, utilizing a cation exchange strategy, Ni-doped CuO nanoarrays grown on 3D Cu foam are synthesized. Notably, Ni-CuO NAs/CF requires a low potential of 1.366 V versus a reversible hydrogen electrode to drive a current density of 100 mA cm-2 , outperforming various benchmark electrocatalysts and maintaining robust stability in alkaline media. Theoretical and experimental studies reveal that Ni as the driving force center can effectively enhance the urea adsorption and stabilize CO*/NH* intermediates toward the UOR. These findings suggest a new direction for constructing nanostructures and modulating electronic structures, ultimately developing promising Cu-based electrode catalysts.

19.
Small ; 18(40): e2203835, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36058653

ABSTRACT

Transition metal oxides (TMOs) as high-capacity electrodes have several drawbacks owing to their inherent poor electronic conductivity and structural instability during the multi-electron conversion reaction process. In this study, the authors use an intrinsic high-valent cation substitution approach to stabilize cation-deficient magnetite (Fe3 O4 ) and overcome the abovementioned issues. Herein, 5 at% of Mo4+ -ions are incorporated into the spinel structure to substitute octahedral Fe3+ -ions, featuring ≈1.7 at% cationic vacancies in the octahedral sites. This defective Fe2.93 ▫0.017 Mo0.053 O4 electrode shows significant improvements in the mitigation of capacity fade and the promotion of rate performance as compared to the pristine Fe3 O4 . Furthermore, physical-electrochemical analyses and theoretical calculations are performed to investigate the underlying mechanisms. In Fe2.93 ▫0.017 Mo0.053 O4 , the cationic vacancies provide active sites for storing Li+ and vacancy-mediated Li+ migration paths with lower energy barriers. The enlarged lattice and improved electronic conductivity induced by larger doped-Mo4+ yield this defective oxide capable of fast lithium intercalation. This is confirmed by a combined characterization including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), galvanostatic intermittent titration technique (GITT) and density functional theory (DFT) calculation. This study provides a valuable strategy of vacancy-mediated reaction to intrinsically modulate the defective structure in TMOs for high-performance lithium-ion batteries.

20.
J Phys Chem Lett ; 13(35): 8386-8396, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36047673

ABSTRACT

Defect engineering is an important means of improving the electrochemical performance of the Co3O4 electrocatalyst in the oxygen evolution reaction (OER). In this study, operando soft X-ray absorption spectroscopy (SXAS) is used to explore the electronic structure of Co3O4 under OER for the first time. The defect-rich Co3O4 (D-Co3O4) has a Co2.45+ state with Co2+ at both octahedral (Oh) and tetrahedral (Td) sites and Co3+ at Oh, whereas Co3O4 has Co2.6+ with Co2+ and Co3+ at Td and Oh sites, respectively. SXAS reveals that upon increasing the voltage, the Co2+ in D-Co3O4 is converted to low-spin Co3+, some of which is further converted to low-spin Co4+; most Co2+ in Co3O4 is converted to Co3+ but rarely to Co4+. When the voltage is switched off, Co4+ intermediates quickly disappear. These findings reveal Co(Oh) in D-Co3O4 can be rapidly converted to active low-spin Co4+ under operando conditions, which cannot be observed by ex situ XAS.

SELECTION OF CITATIONS
SEARCH DETAIL
...