Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Med Chem ; 63(22): 13578-13594, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32910655

ABSTRACT

SHP2 is a nonreceptor protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also plays an important role in the programed cell death pathway (PD-1/PD-L1). As an oncoprotein as well as a potential immunomodulator, controlling SHP2 activity is of high therapeutic interest. As part of our comprehensive program targeting SHP2, we identified multiple allosteric binding modes of inhibition and optimized numerous chemical scaffolds in parallel. In this drug annotation report, we detail the identification and optimization of the pyrazine class of allosteric SHP2 inhibitors. Structure and property based drug design enabled the identification of protein-ligand interactions, potent cellular inhibition, control of physicochemical, pharmaceutical and selectivity properties, and potent in vivo antitumor activity. These studies culminated in the discovery of TNO155, (3S,4S)-8-(6-amino-5-((2-amino-3-chloropyridin-4-yl)thio)pyrazin-2-yl)-3-methyl-2-oxa-8-azaspiro[4.5]decan-4-amine (1), a highly potent, selective, orally efficacious, and first-in-class SHP2 inhibitor currently in clinical trials for cancer.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/enzymology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Antineoplastic Agents/therapeutic use , Dogs , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Macaca fascicularis , Mice , Neoplasms/drug therapy , Neoplasms/pathology , Rats , Tumor Cells, Cultured , Xenograft Model Antitumor Assays/methods
2.
J Med Chem ; 60(5): 2155-2161, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28186750

ABSTRACT

While adding the structural features that are more favored by on-target activity is the more common strategy in selectivity optimization, the opposite strategy of subtracting the structural features that contribute more to off-target activity can also be very effective. Reported here is our successful effort of improving the kinase selectivity of type II maternal embryonic leucine zipper kinase inhibitors by applying these two complementary approaches together, which clearly demonstrates the powerful synergy between them.


Subject(s)
Enzyme Inhibitors/pharmacology , Leucine Zippers , Protein Serine-Threonine Kinases/antagonists & inhibitors , Crystallography, X-Ray , Enzyme Inhibitors/chemistry
3.
Nature ; 535(7610): 148-52, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27362227

ABSTRACT

The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS­ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 µM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS­ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.


Subject(s)
Neoplasms/drug therapy , Neoplasms/enzymology , Piperidines/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrimidines/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Allosteric Regulation/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Inhibitory Concentration 50 , MAP Kinase Signaling System/drug effects , Mice , Mice, Nude , Models, Molecular , Neoplasms/pathology , Oncogene Protein p21(ras)/metabolism , Piperidines/chemistry , Piperidines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Stability/drug effects , Protein Structure, Tertiary/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Reproducibility of Results , Xenograft Model Antitumor Assays
4.
J Med Chem ; 59(17): 7773-82, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27347692

ABSTRACT

SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein-ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.


Subject(s)
Antineoplastic Agents/chemistry , Piperidines/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrazines/chemistry , Pyrimidines/chemistry , Administration, Oral , Allosteric Regulation , Allosteric Site , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Female , Heterografts , High-Throughput Screening Assays , Humans , Male , Mice, Inbred C57BL , Mice, Nude , Models, Molecular , Neoplasm Transplantation , Piperidines/chemical synthesis , Piperidines/pharmacokinetics , Piperidines/pharmacology , Protein Conformation , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Structure-Activity Relationship
5.
J Med Chem ; 56(16): 6495-511, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23844574

ABSTRACT

Tankyrase 1 and 2 have been shown to be redundant, druggable nodes in the Wnt pathway. As such, there has been intense interest in developing agents suitable for modulating the Wnt pathway in vivo by targeting this enzyme pair. By utilizing a combination of structure-based design and LipE-based structure efficiency relationships, the core of XAV939 was optimized into a more stable, more efficient, but less potent dihydropyran motif 7. This core was combined with elements of screening hits 2, 19, and 33 and resulted in highly potent, selective tankyrase inhibitors that are novel three pocket binders. NVP-TNKS656 (43) was identified as an orally active antagonist of Wnt pathway activity in the MMTV-Wnt1 mouse xenograft model. With an enthalpy-driven thermodynamic signature of binding, highly favorable physicochemical properties, and high lipophilic efficiency, NVP-TNKS656 is a novel tankyrase inhibitor that is well suited for further in vivo validation studies.


Subject(s)
Acetamides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrimidinones/pharmacology , Tankyrases/antagonists & inhibitors , Acetamides/administration & dosage , Acetamides/chemistry , Administration, Oral , Animals , Area Under Curve , Biological Availability , Enzyme Inhibitors/administration & dosage , Mice , Models, Molecular , Pyrimidinones/administration & dosage , Pyrimidinones/chemistry , Structure-Activity Relationship
6.
ACS Med Chem Lett ; 3(6): 445-9, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-24900493

ABSTRACT

Herein, we describe the discovery of potent and highly selective inhibitors of both CDK4 and CDK6 via structure-guided optimization of a fragment-based screening hit. CDK6 X-ray crystallography and pharmacokinetic data steered efforts in identifying compound 6, which showed >1000-fold selectivity for CDK4 over CDKs 1 and 2 in an enzymatic assay. Furthermore, 6 demonstrated in vivo inhibition of pRb-phosphorylation and oral efficacy in a Jeko-1 mouse xenograft model.

7.
European J Org Chem ; (9): 2055-2059, 2006.
Article in English | MEDLINE | ID: mdl-18542714

ABSTRACT

Fluorous proline derivatives generated from one-pot, three-component [3+2] cycloaddition of azomethine ylides are employed for different post-condensation reactions to form hydantoin-, piperazinedione-, and benzodiazepinedione-fused tricyclic and tetracyclic ring systems. The high synthetic efficiency is achieved by conducting fast microwave reactions and easy fluorous-solid phase extractions for reaction mixture purifications. Methods developed for these novel drug-like heterocyclic compounds can be applied to diversity-oriented library synthesis.

8.
Mol Divers ; 9(4): 353-9, 2005.
Article in English | MEDLINE | ID: mdl-16311812

ABSTRACT

Reactions using fluorous reagents and scavengers are compared side-by-side with their solid-supported counterparts. Fluorous triphenylphosphine is used in the bromination reaction of alcohols, fluorous thiol is used as an electrophile scavenger for alpha-bromoketones, fluorous isatoic anhydride is used as a nucleophile scavenger for primary and secondary amines. Reactions involving fluorous reagents and scavengers occur in homogeneous media with solution-phase reaction kinetics. Reactions with solid-supported reagents and scavengers occur in a heterogeneous media, and the reaction kinetics are greatly affected by the nature of the solid-support and reaction environment. Significantly larger amounts of reagents and more time are usually required to complete the solid-supported reaction.


Subject(s)
Fluorine/chemistry , Amines/chemistry , Benzyl Alcohols/chemistry , Indicators and Reagents , Ketones , Kinetics , Organophosphorus Compounds , Oxazines , Piperazines , Sulfhydryl Compounds
9.
Org Lett ; 6(9): 1473-6, 2004 Apr 29.
Article in English | MEDLINE | ID: mdl-15101770

ABSTRACT

[reaction: see text] A new strategy to improve the efficiency of Suzuki coupling reactions is introduced by combining fast microwave reaction with easy fluorous separation. Aryl perfluorooctylsulfonates derived from the corresponding phenols are coupled with aryl boronic acids to form biaryls under general microwave conditions. Both intermediates and products are purified by solid-phase extraction over FluoroFlash silica gel. Application of this tagging strategy to multistep synthesis of biaryl-substituted hydantoin is also described.


Subject(s)
Boronic Acids/chemistry , Hydrocarbons, Fluorinated/chemical synthesis , Microwaves , Sulfates/chemical synthesis , Alkanesulfonic Acids/chemistry , Fluorocarbons/chemistry , Molecular Structure
10.
Org Lett ; 5(7): 1015-7, 2003 Apr 03.
Article in English | MEDLINE | ID: mdl-12659562

ABSTRACT

[structure: see text] The fluorous counterpart of the Marshall resin, 4-(1H,1H,2H,2H-perfluorodecylsulfanyl)phenol (FluoMar), is prepared by S-alkylation of 4-mercaptophenol with C(8)F(17)CH(2)CH(2)I and employed in the synthesis of amide and diamide analogues. The final products are purified by solid-phase extraction (SPE) over FluoroFlash silica cartridges.


Subject(s)
Amides/chemical synthesis , Fluorocarbon Polymers/chemistry , Fluorocarbon Polymers/chemical synthesis , Alkylation , Amides/chemistry , Fluorocarbon Polymers/isolation & purification , Magnetic Resonance Spectroscopy , Molecular Structure , Solutions/chemistry
11.
Mol Divers ; 7(2-4): 199-202, 2003.
Article in English | MEDLINE | ID: mdl-14870851

ABSTRACT

Coupling of microwave reactions with fluorous separations can dramatically increase the efficiency of high-speed synthesis. Described in this paper is a fluorous synthesis of aryl sulfides by palladium-catalyzed cross-coupling of aryl perfluoroalkylsulfonates (C8F17O2SOAr) with thiols (RSH) under microwave irradiation. Fluorous solid-phase extractions (F-SPE) are employed for the purification of reaction mixtures. No fluorous solvents are involved in reaction and separation processes. The fluorous synthesis is further extended to the multi-step synthesis of substituted hydantoin and amide scaffolds.


Subject(s)
Chemistry, Organic/methods , Microwaves , Palladium/chemistry , Sulfides/chemical synthesis , Amides/chemistry , Hydantoins/chemistry , Models, Chemical
12.
J Am Chem Soc ; 124(35): 10443-50, 2002 Sep 04.
Article in English | MEDLINE | ID: mdl-12197746

ABSTRACT

Solution-phase mixture synthesis has efficiency advantages and favorable reaction kinetics. Applications of this technique, however, have been discouraged by the difficulty in obtaining individual, pure final products by using conventional separation and identification processes. Introduced here is a new strategy for mixture synthesis that addresses the separation and identification problems. Members of a series of organic substrates are paired with a series of fluorous tags of different chain lengths. The tagged starting materials are then mixed and taken through a multistep reaction process. Fluorous chromatography is used to demix the tagged product mixtures on the basis of the fluorine content of the tags to provide the individual pure components of the mixture, which are detagged to release the final products. The utility of fluorous mixture synthesis is demonstrated by the preparation of a 560-membered library of analogues of the natural product mappicine. A seven-component mixture is carried through a four-step mixture synthesis (two one-pot and two parallel steps) to incorporate two additional points of diversity onto the tetracyclic core. Methods for analysis and purification of the intermediates are established for the quality control of the mixture synthesis.


Subject(s)
Alkaloids/chemical synthesis , Hydrocarbons, Fluorinated/chemistry , Alkaloids/chemistry , Chemistry, Organic/methods , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...