Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(9): e202318412, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38198567

ABSTRACT

Vinylogous urethane (VUO ) based polymer networks are widely used as catalyst-free vitrimers that show rapid covalent bond exchange at elevated temperatures. In solution, vinylogous ureas (VUN ) undergo much faster bond exchange than VUO and are highly dynamic at room temperature. However, this difference in reactivity is not observed in their respective dynamic polymer networks, as VUO and VUN vitrimers prepared herein with very similar macromolecular architectures show comparable stress relaxation and creep behavior. However, by using mixtures of VUO and VUN linkages within the same network, the dynamic reactions can be accelerated by an order of magnitude. The results can be rationalized by the effect of intermolecular hydrogen bonding, which is absent in VUO vitrimers, but is very pronounced for vinylogous urea moieties. At low concentrations of VUN , these hydrogen bonds act as catalysts for covalent bond exchange, while at high concentration, they provide a pervasive vinylogous urea - urethane (VU) network of strong non-covalent interactions, giving rise to phase separation and inhibiting polymer chain dynamics. This offers a straightforward design principle for dynamic polymer materials, showing at the same time the possible additive and synergistic effects of supramolecular and dynamic covalent polymer networks.

2.
Adv Clin Exp Med ; 33(3): 273-282, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37486696

ABSTRACT

BACKGROUND: Cervical cancer is prevalent throughout the world, and microRNA-497-5p (miR-497-5p) plays an important role in its development. However, the specific mechanism by which miR-497-5p targets the transferrin receptor (TFRC) during cervical cancer development has not been clarified. OBJECTIVES: The aim of the study was to unravel TFRC expression and its role in cervical cancer cells, as well as the impact of the miR-497-5p/TFRC axis on cervical cancer cells. MATERIAL AND METHODS: The target mRNA was determined through differential analysis, followed by the evaluation of its impact on survival and clinical staging. Then, quantitative real-time polymerase chain reaction (qPCR) was conducted to analyze the TFRC mRNA level in cervical cancer cells and normal cervical epithelial cells. Western blot (WB) was utilized to examine the expression levels of TFRC, cleaved caspase-3, cleaved caspase-9, and epithelial-mesenchymal transition (EMT)-related proteins. The miRNAs upstream of the target mRNA were predicted, and Pearson correlation analysis was performed, followed by the validation through the dual-luciferase reporter assay. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assays were performed to analyze cancer cell viability, followed by a transwell assay aimed at measuring cell migratory and invasive abilities. Finally, flow cytometry was conducted to examine cell apoptosis and cell cycle. RESULTS: The transferrin receptor was significantly increased in cervical cancer cells and positively associated with clinical T and N stages. Silencing TFRC could constrain cell proliferative, migratory and invasive abilities, arrest the cell cycle and facilitate cell apoptosis in cervical cancer cells. The bioinformatics analysis showed a significantly negative correlation between miR-497-5p and TFRC in cervical cancer. Moreover, upregulated miR-497-5p hampered cervical cancer progression and decreased TFRC expression. The overexpression of TFRC reversed the suppressive impact of miR-497-5p overexpression on cervical cancer progression. CONCLUSIONS: The modulatory role of the miR-497-5p/TFRC axis was confirmed in cervical cancer cells. This axis may present a new avenue for the diagnosis of cervical cancer and provide a novel target for cervical cancer treatment.


Subject(s)
MicroRNAs , Uterine Cervical Neoplasms , Female , Humans , Cell Line, Tumor , Uterine Cervical Neoplasms/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , RNA, Messenger/genetics , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , Phenotype , Cell Proliferation/genetics
3.
ACS Cent Sci ; 9(4): 639-647, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37122459

ABSTRACT

Suspensions of polymeric nano- and microparticles are fascinating stress-responsive material systems that, depending on their composition, can display a diverse range of flow properties under shear, such as drastic thinning, thickening, and even jamming (reversible solidification driven by shear). However, investigations to date have almost exclusively focused on nonresponsive particles, which do not allow in situ tuning of the flow properties. Polymeric materials possess rich phase transitions that can be directly tuned by their chemical structures, which has enabled researchers to engineer versatile adaptive materials that can respond to targeted external stimuli. Reported herein are suspensions of (readily prepared) micrometer-sized polymeric particles with accessible glass transition temperatures (T g) designed to thermally control their non-Newtonian rheology. The underlying mechanical stiffness and interparticle friction between particles change dramatically near T g. Capitalizing on these properties, it is shown that, in contrast to conventional systems, a dramatic and nonmonotonic change in shear thickening occurs as the suspensions transition through the particles' T g. This straightforward strategy enables the in situ turning on (or off) of the system's ability to shear jam by varying the temperature relative to T g and lays the groundwork for other types of stimuli-responsive jamming systems through polymer chemistry.

4.
J Econ Entomol ; 113(3): 1105-1109, 2020 06 06.
Article in English | MEDLINE | ID: mdl-32161954

ABSTRACT

The lethal exposure time to controlled atmospheres of high nitrogen at stored grain temperatures is an important information for control of stored-product insects. The mortality of 1-d-old egg, 1-wk-old (first or second instar) larva, 3-wk-old (fourth or fifth instar) larva, and 1-d-old pupa of Plodia interpunctella (Hübner) was determined at 18 ± 1, 23 ± 1, and 28 ± 1°C in 98% N2 mixed with air. At 18°C, the lethal exposure times to achieve 100% mortality were 12.7 ± 0.7, 16.3 ± 0.3, 19.7 ± 0.7, and 14.7 ± 0.7 d for 1-d-old egg, 1-wk-old larva, 3-wk-old larva, and 1-d-old pupa, respectively. Temperature had significant effect on the lethal exposure time, and increase of the temperature significantly decreased the lethal exposure time. The order of the insect stages from the highest to lowest for LT50 values was follows: 3-wk-old larva > 1-wk-old larva > 1-d-old pupa ≥ 1-d-old egg. The minimum lethal exposure times required to kill all stages of P. interpunctella were about 20, 16, and 12 d at 18, 23, and 28°C, respectively.


Subject(s)
Moths , Nitrogen , Animals , Atmosphere , Larva , Pupa , Temperature
5.
Toxicology ; 425: 152242, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31306684

ABSTRACT

Some previous studies showed that organotin compounds induced diabetes in animal models. The underlying mechanisms should be further revealed. In this study, male KM mice were exposed to tributyltin (TBT) at 0.5, 5 and 50 µg/kg once every three days for 45 days. The TBT-treated mice exhibited an elevation of fasting blood glucose level and glucose intolerance. The fasting serum insulin levels were increased and reached a significant difference in the 50 µg/kg group; the glucagon levels were significantly decreased in all the treatments. Pancreatic ß-cell mass was significantly decreased in all the treatments; α-cell mass showed a significant decrease in the 5 and 50 ug/kg groups. The transcription of pancreatic insulin gene (Ins2) showed an up-regulation and reached a significant difference in the 5 and 50 µg/kg groups, which would be responsible for the increased serum insulin levels. The transcription of glucagon gene (Gcg) in the pancreas was significantly down-regulated in the 5 and 50 ug/kg groups. The protein expression of hepatic glucagon receptor was down-regulated, while the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase was up-regulated accompanied by increased hepatic glycogen content. These results indicated that hepatic gluconeogenesis was enhanced during insulin resistance stage caused by TBT exposure, which would exert a potential risk inducing the development of diabetes mellitus.


Subject(s)
Glucose/metabolism , Liver/drug effects , Trialkyltin Compounds/toxicity , Animals , Blotting, Western , Fluorescent Antibody Technique , Glucagon/blood , Glucagon-Secreting Cells/drug effects , Gluconeogenesis/drug effects , Glucose Intolerance/chemically induced , Glucose Tolerance Test , Hyperinsulinism/chemically induced , Insulin-Secreting Cells/drug effects , Liver/metabolism , Male , Mice , Real-Time Polymerase Chain Reaction , Receptors, Glucagon/metabolism
6.
Mediators Inflamm ; 2018: 8736949, 2018.
Article in English | MEDLINE | ID: mdl-29977153

ABSTRACT

CD38 was first identified as a lymphocyte-specific antigen and then has been found to be widely expressed in a variety of cell types. The functions of CD38 are involved in numerous biological processes including immune responses. Here, we showed the downregulations of both TLR2 mRNA and protein in macrophages from CD38-/- mice and in CD38 knockdown RAW264.7 cells. Several NF-κB-binding motifs in the promoter region of the TLR2 gene were identified by the bioinformatics analysis and were confirmed by the luciferase activity assay with the different truncated TLR2 promoters. CD38 deficiency resulted in the reduction of NF-κB p65 and acetyl-NF-κB p65 (Ac-p65) levels as determined by Western blot. The expression of Sirt1 did not change, but an increased activity of Sirt1 was observed in CD38-deficient macrophages. Inhibition of the Sirt1/NF-κB signaling pathway resulted in downregulation of TLR2 expression in RAW264.7 cells. However, re-expression of CD38 in the knockdown clones reversed the effect on Sirt1/NF-κB/TLR2 signaling, which is NAD-dependent. Moreover, the inflammatory cytokines including G-CSF, IL-1alpha, IL-6, MCP-1, MIP-1alpha, and RANTES were increased in CD38 knockdown RAW264.7 cells. Taken together, our data demonstrated that CD38 deficiency enhances inflammatory response in macrophages, and the mechanism may be partly associated with increased Sirt1 activity, which promoted NF-κB deacetylation and then inhibited expression of the TLR2 gene. Obviously, our study may provide an insight into the molecular mechanisms in CD38-mediated inflammation.


Subject(s)
ADP-ribosyl Cyclase 1/deficiency , Inflammation/metabolism , Macrophages, Peritoneal/metabolism , Macrophages/metabolism , NF-kappa B/metabolism , Sirtuin 1/metabolism , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/metabolism , Animals , Blotting, Western , Computational Biology , Inflammation/genetics , Mice , RAW 264.7 Cells , Signal Transduction/genetics , Signal Transduction/physiology , Sirtuin 1/genetics , Toll-Like Receptor 2/metabolism
7.
Molecules ; 21(9)2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27657024

ABSTRACT

Myocardial ischemic/reperfusion injury results from severe impairment of coronary blood supply and leads to irreversible cell death, with limited therapeutic possibilities. Asiatic acid is a pentacyclic triterpenoid derived from the tropical medicinal plant Centella asiatica and serves a variety of bioactivities. In this study, we determined the effect of asiatic acid on myocardial ischemia/reperfusion injury and investigated the underlying mechanisms, using an in vitro rat H9c2 cardiomyocytes model of oxygen-glucose deprivation/reoxygenation (OGD/R) injury. Results showed that pre-treatment with asiatic acid significantly augmented cell viability and prevented lactate dehydrogenase (LDH) release in a concentration-dependent manner after OGD/R exposure. Asiatic acid at 10 µM effectively inhibited apoptotic cell death, suppressed the activities of caspase-3 and caspase-9, and reversed Bax/Bcl-2 ratio in hypoxic H9c2 cells. In addition, asiatic acid improved mitochondrial function, as evidenced by reduced reactive oxygen species (ROS) accumulation, enhanced mitochondrial membrane potential and decreased intracellular calcium concentration. Using Western blot assay, we found that asiatic acid promoted the phosphorylation of Akt and subsequent inactivation of glycogen synthase kinase-3ß (GSK-3ß), and induced the expression of hypoxia-inducible factor 1α (HIF-1α) after OGD/R. The cardioprotective effects of asiatic acid were attenuated by the Akt or HIF-1α inhibitor. Taken together, these data suggested that asiatic acid exerted protective effects against OGD/R-induced apoptosis in cardiomyocytes, at least partly via the Akt/GSK-3ß/HIF-1α pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...