Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Chin Med J (Engl) ; 137(9): 1054-1068, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38563217

ABSTRACT

BACKGROUND: Alterations in macular thickness and vascular density before clinically visible diabetic retinopathy (DR) remain inconclusive. This study aimed to determine whether retinal manifestations in abnormal glucose metabolism (AGM) patients differ from those in the healthy individuals. METHODS: PubMed, Embase, and Web of Science were searched between 2000 and 2021. The eligibility criteria were AGM patients without DR. Primary and secondary outcomes measured by optical coherence tomography (OCT) and OCT angiography (OCTA) were analyzed and expressed as standardized mean differences (SMDs) with 95% confidence intervals (CIs). A random-effects model was used in the data synthesis. The potential publication bias for the variables was evaluated using Egger's test. RESULTS: A total of 86 observational studies involving 13,773 participants and 15,416 eyes were included. OCT revealed that compared to healthy controls, the total macular thickness of AGM patients was thinner, including the thickness of fovea (-0.24, 95% CI [-0.39, -0.08]; P  = 0.002, I2  = 87.7%), all regions of parafovea (-0.32, 95% CI [-0.54, -0.11]; P  = 0.003; I2  = 71.7%) and the four quadrants of perifovea; the thickness of peripapillary retinal nerve fiber layer (pRNFL), macular retinal nerve fiber layer (mRNFL), and ganglion cell layer (GCL) also decreased. OCTA indicated that the superficial and deep vascular density decreased, the foveal avascular zone (FAZ) area enlarged, and the acircularity index (AI) reduced in AGM individuals. CONCLUSIONS: Retinal thinning and microvascular lesions have occurred before the advent of clinically detectable DR; OCT and OCTA may have the potential to detect these preclinical changes. REGISTRATION: PROSPERO; http://www.crd.york.ac.uk/prospero/ ; No. CRD42021269885.


Subject(s)
Macula Lutea , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Macula Lutea/diagnostic imaging , Macula Lutea/blood supply , Macula Lutea/metabolism , Diabetic Retinopathy/diagnostic imaging , Diabetic Retinopathy/metabolism , Glucose/metabolism , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology
2.
Heliyon ; 9(10): e21109, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37916126

ABSTRACT

Background: Diabetic retinopathy (DR) is a common complication in diabetic patients. DR is also a neurodegenerative disease. Patients with hyperglycemia, hyperlipidemia, and hypertension are vulnerable to retinopathy development. While the roles of blood glucose and blood pressure in the development of retinopathy have been extensively studied, the relationship between body fat and DR pathogenesis and the impact of lipid-reducing drugs on DR has just emerged as a research hotspot in DR study. We aim to visualize the contributions and cooperation of reporters, organizations, and nations, in addition to the research hotspots and trends in DR-related lipid research from 1993 to 2023, by bibliometric analysis. Methods: We extracted all publications about DR-related lipid research from 1993 to 2023 from the Web of Science Core Collection, and bibliometric features were studied using VOSviewer and the CiteSpace program. Results: 1402 documents were retrieved. The number of studies has risen consistently for three decades, from an average of 16.8/year in the 1990s to 28.8/year in the 2000s, 64.5/year in 2010s, and reached 112/year in 2020-2022, confirming they are hot research topic in the field. These reports were from 93 nations/regions, with the USA, China, Japan, Australia, and England taking the leading positions. Diabetes Research and Clinical Practice was the journal that published the most studies, and Diabetes Care was the most quoted. We identified 6979 authors, with Wong TY having the most papers and being the most commonly co-cited. The most popular keyword, according to our research, is diabetic retinopathy. Oxidative stress, diabetic macular edema (DME), lipid peroxidation, and other topics have often been investigated. Conclusion: DR-related lipid research is conducted mainly in North America, Asia, Oceania, and Europe. Much study has centered on the relationship between lipid-lowering therapy and DR pathogenesis. These studies strongly support using lipid-reducing medications (fenofibrate, statins, and omega-3 PUFAs), combined with hyperglycemia and hypertension therapy, to prevent and treat DR. However, the impact of fenofibrate or statin on retinopathy is not correlated with their action on blood lipid profiles. Thus, more randomized clinical trials with primary endpoints related to DR in T1D or T2D are merited. In addition, the lipid biomarker for DR (lipid aldehydes, ALEs, and cholesterol crystals), the action of lipid-reducing medicines on retinopathy, the mechanism of lipid-lowering medications preventing or curing DR, and ocular delivery of lipid-lowering drugs to diabetic patients are predicted as the research focus in the future in the DR-related lipid research field.

3.
Mol Aspects Med ; 94: 101221, 2023 12.
Article in English | MEDLINE | ID: mdl-37866106

ABSTRACT

Glaucoma is a common irreversible vision loss disorder because of the gradual loss of retinal ganglion cells (RGCs) and the optic nerve axons. Major risk factors include elder age and high intraocular pressure (IOP). However, high IOP is neither necessary nor sufficient to cause glaucoma. Some non-IOP signaling cascades can mediate RGC degeneration. In addition, gender, diet, obesity, depression, or anxiety also contribute to the development of glaucoma. Understanding the mechanism of glaucoma development is crucial for timely diagnosis and establishing new strategies to improve current IOP-reducing therapies. The microbiota exerts a marked influence on the human body during homeostasis and disease. Many glaucoma patients have abnormal compositions of the microbiota (dysbiosis) in multiple locations, including the ocular surface, intraocular cavity, oral cavity, stomach, and gut. Here, we discuss findings in the last ten years or more about the microbiota and metabolite changes in animal models, patients with three risk factors (aging, obesity, and depression), and glaucoma patients. Antigenic mimicry and heat stress protein (HSP)-specific T-cell infiltration in the retina may be responsible for commensal microbes contributing to glaucomatous RGC damage. LPS-TLR4 pathway may be the primary mechanism of oral and ocular surface dysbiosis affecting glaucoma. Microbe-derived metabolites may also affect glaucoma pathogenesis. Homocysteine accumulation, inflammatory factor release, and direct dissemination may link gastric H. pylori infection and anterior chamber viral infection (such as cytomegalovirus) to glaucoma. Potential therapeutic protocols targeting microbiota include antibiotics, modified diet, and stool transplant. Later investigations will uncover the underlying molecular mechanism connecting dysbiosis to glaucoma and its clinical applications in glaucoma management.


Subject(s)
Glaucoma , Microbiota , Animals , Humans , Aged , Dysbiosis , Glaucoma/drug therapy , Glaucoma/metabolism , Glaucoma/pathology , Retina/metabolism , Obesity/pathology , Disease Models, Animal
4.
Front Cell Infect Microbiol ; 13: 1225859, 2023.
Article in English | MEDLINE | ID: mdl-37621873

ABSTRACT

Introduction: Recently the role of gut microbial dysbiosis in many ocular disorders, including but not limited to uveitis, age-related macular degeneration (AMD), diabetic retinopathy (DR), dry eye, keratitis and orbitopathy is a hot research topic in the field. Targeting gut microbiota to treat these diseases has become an unstoppable trend. Bibliometric study and visualization analysis have become essential methods for literature analysis in the medical research field. We aim to depict this area's research hotspots and future directions by bibliometric software and methods. Methods: We search all the related publications from the Web of Science Core Collection. Then, CiteSpace was applied to analyze and visualize the country distributions, dual-map overlay of journals, keyword bursts, and co-cited references. VOSviewer was employed to identify authors, co-cited authors, journals and co-cited journals and display the keyword co-occurrence networks. Results: A total of 284 relevant publications were identified from 2009 to 2023. The number of studies has been small in the first five years and has grown steadily since 2016. These studies were completed by 1,376 authors from 41 countries worldwide, with the United States in the lead. Lin P has published the most papers while Horai R is the most co-cited author. The top journal and co-cited journal are both Investigative Ophthalmology & Visual Science. In the keyword co-occurrence network, except gut microbiota, inflammation becomes the keyword with the highest frequency. Co-citation analyses reveal that gut dysbiosis is involved in common immune- and inflammation-mediated eye diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, dry eye, and Graves' orbitopathy, and the study of microbiomes is no longer limited to the bacterial populations. Therapeutic strategies that target the gut microbiota, such as probiotics, healthy diet patterns, and fecal microbial transplantation, are effective and critical to future research. Conclusions: In conclusion, the bibliometric analysis displays the research hotspots and developmental directions of the involvement of gut microbiota in the pathogenesis and treatment of some ocular diseases. It provides an overview of this field's dynamic evolution and structural relationships.


Subject(s)
Diabetic Retinopathy , Gastrointestinal Microbiome , Graves Ophthalmopathy , Macular Degeneration , Humans , Dysbiosis , Inflammation , Bibliometrics
5.
Mol Ther Nucleic Acids ; 31: 596-609, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36910709

ABSTRACT

Retinitis pigmentosa (RP) is a group of retinal diseases that cause the progressive death of retinal photoreceptor cells and eventually blindness. Mutations in the ß-domain of the phosphodiesterase 6 (Pde6b) gene are the most identified causes of autosomal recessive RP. Clinically, there is no effective treatment so far that can stop the progression of RP and restore the vision. Here, we report a base editing approach in which adeno-associated virus (AAV)-mediated adenine base editor (ABE) delivering to postmitotic photoreceptors was conducted to correct the Pde6b mutation in a retinal degeneration 10 (rd10) mouse model of RP. Subretinal delivery of AAV8-ABE corrected Pde6b mutation with averaging up to 20.79% efficiency at the DNA level and 54.97% efficiency at the cDNA level without bystanders, restored PDE6B expression, preserved photoreceptors, and rescued visual function. RNA-seq revealed the preservation of genes associated with phototransduction and photoreceptor survival. Our data have demonstrated that base editing is a potential gene therapy that could provide durable protection against RP.

6.
Front Neuroanat ; 16: 995369, 2022.
Article in English | MEDLINE | ID: mdl-36466782

ABSTRACT

Glaucoma is a leading cause of blindness with progressive degeneration of retinal ganglion cells. Aging and increased intraocular pressure (IOP) are major risk factors. Lowering IOP does not always stop the disease progression. Alternative ways of protecting the optic nerve are intensively studied in glaucoma. Astrocytes are macroglia residing in the retina, optic nerve head (ONH), and visual brain, which keep neuronal homeostasis, regulate neuronal activities and are part of the immune responses to the retina and brain insults. In this brief review, we discuss the activation and heterogeneity of astrocytes in the retina, optic nerve head, and visual brain of glaucoma patients and animal models. We also discuss some recent transgenic and gene knockout studies using glaucoma mouse models to clarify the role of astrocytes in the pathogenesis of glaucoma. Astrocytes are heterogeneous and play crucial roles in the pathogenesis of glaucoma, especially in the process of neuroinflammation and mitochondrial dysfunction. In astrocytes, overexpression of Stat3 or knockdown of IκKß/p65, caspase-8, and mitochondrial uncoupling proteins (Ucp2) can reduce ganglion cell loss in glaucoma mouse models. Based on these studies, therapeutic strategies targeting the heterogeneity of reactive astrocytes by enhancing their beneficial reactivity or suppressing their detrimental reactivity are alternative options for glaucoma treatment in the future.

7.
Viruses ; 14(9)2022 09 07.
Article in English | MEDLINE | ID: mdl-36146788

ABSTRACT

Visual loop-mediated isothermal amplification (LAMP) is qualified to be applied in the field to detect pathogens due to its simplicity, rapidity and cost saving. However, the color changes in currently reported visual reverse transcription LAMP (RT-LAMP) for foot-and-mouth disease virus (FMDV) detection are not so obvious to the naked eye, so interpretation of results is troublesome. In this study, a new naked-eye visual RT-LAMP to detect all seven distinct serotypes of FMDV was established based on the 3D genes by using pH-sensitive neutral red as the indicator, rendering a sharp contrast of color changes between the negative (light orange) and the positive (pink). Analytical sensitivity tests showed that the detection limit of the visual RT-LAMP was 104 copies/µL while those were 103 and 104 copies/µL for the RT-qPCR and conventional RT-PCR methods, respectively. Specificity tests proved that the established visual RT-LAMP assay had no cross-reactivity with other common livestock viruses. Furthermore, the analysis of 59 clinical samples showed 98.31% and 100% concordance with the RT-qPCR and the RT-PCR, respectively. The pan-serotypic FMD visual RT-LAMP assay could be suitable for a pen-side test of all seven serotypes of FMDV because the results could be easily distinguished by the naked eye without the requirement of complicated instruments and professional technicians. Hence, the novel method may have a promising prospect in field tests which exert an important role in monitoring, preventing, and controlling FMD, especially in regions with no PCR or qPCR instrument available.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease Virus/genetics , Molecular Diagnostic Techniques , Neutral Red , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription , Sensitivity and Specificity
8.
Commun Biol ; 5(1): 411, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35505181

ABSTRACT

The Tg(Pax6-cre,GFP)2Pgr (α-Cre) mouse is a commonly used Cre line thought to be retinal-specific. Using targeted locus amplification (TLA), we mapped the insertion site of the transgene, and defined primers useful to deduce zygosity. Further analyses revealed four tandem copies of the transgene. The insertion site mapped to clusters of vomeronasal and olfactory receptor genes. Using R26R and Ai14 Cre reporter mice, we confirmed retinal Cre activity, but also detected expression in Gα0+ olfactory neurons. Most α-Cre+ olfactory neurons do not express Pax6, implicating the influence of neighboring regulatory elements. RT-PCR and buried food pellet test did not detect any effects of the transgene on flanking genes in the nasal mucosa and retina. Together, these data precisely map α-Cre, show that it does not affect surrounding loci, but reveal previously unanticipated transgene expression in olfactory neurons. The α-Cre mouse can be a valuable tool in both retinal and olfactory research.


Subject(s)
Neurons , Retina , Animals , Integrases , Mice , Mice, Transgenic , Transgenes
9.
Front Genet ; 13: 828120, 2022.
Article in English | MEDLINE | ID: mdl-35401677

ABSTRACT

Baraitser-Winter cerebrofrontofacial syndrome (BWCFF, OMIM: 243310) is a rare autosomal-dominant developmental disorder associated with variants in the genes ACTB or ACTG1. It is characterized by brain malformations, a distinctive facial appearance, ocular coloboma, and intellectual disability. However, the phenotypes of BWCFF are heterogenous, and its molecular pathogenesis has not been fully elucidated. In the present study, we conducted detailed clinical examinations on a Chinese patient with BWCFF and found novel ocular manifestations including pseudoduplication of the optic disc and nystagmus. Targeted gene panel sequencing and Sanger sequencing identified a de novo heterozygous missense c.478A > G (p.Thr160Ala) variant in ACTB. The mRNA and protein expression of ACTB was assessed by quantitative reverse transcription PCR and Western blots. Furthermore, the functional effects of the pathogenic variant were analyzed by protein structure analysis, which indicated that the variant may affect the active site for ATP hydrolysis by the actin ATPase, resulting in abnormal filamentous actin organization in peripheral blood mononuclear cells. This discovery extends the ACTB variant spectrum, which will improve genetic counseling and diagnosis, and may contribute to understanding the pathogenic mechanisms of actin-related diseases.

10.
Front Pharmacol ; 13: 824790, 2022.
Article in English | MEDLINE | ID: mdl-35273502

ABSTRACT

The use of steroids to treat macular edema (ME) is a research hotspot in ophthalmology. We utilized CiteSpace and VOSviewer software to evaluate the Web of Science Core Collection publications and to build visualizing maps to describe the research progress in this topic. There were 3,252 publications for three decades during 1988-2021. The number of studies was low during the first 14 years but has risen consistently in the following two decades. The average publications per year were only 4.8 during 1988-2002, which jumped to 113 per year during 2003-2012, and 227 per year during 2013-2021. These publications came from 83 countries/regions, with the United States, Germany, and Italy leading positions. Most studies were published in Investigative Ophthalmology Visual Science, and Ophthalmology was the most cited journal. We found 9,993 authors, with Bandello F having the most publications and Jonas JB being the most frequently co-cited. According to our research, the most popular keyword is triamcinolone acetonide (TA). Macular edema, diabetic macular edema (DME), retinal vein occlusion (RVO), dexamethasone (DEX), fluocinolone acetonide (FA), and some other keywords were commonly studied in this field. In conclusion, the bibliometric analysis provides a comprehensive overview of steroid hotspots and developmental tendencies in the macular edema study. While anti-VEGF therapy is the first-line treatment for DME and RVO-induced macular edema, steroids implant is a valid option for these DME patients not responding to anti-VEGF therapy and non-DME patients with macular edema. Combined therapy with anti-VEGF and steroid agents is vital for future research.

11.
Front Pharmacol ; 13: 815977, 2022.
Article in English | MEDLINE | ID: mdl-35308237

ABSTRACT

Atherosclerosis (AS) is a pathological process involving lipid oxidation, immune system activation, and endothelial dysfunction. The activated immune system could lead to inflammation and oxidative stress. Risk factors like aging and hyperhomocysteinemia also promote the progression of AS. Epigenetic modifications, including DNA methylation, histone modification, and non-coding RNA, are involved in the modulation of genes between the environment and AS formation. DNA methylation is one of the most important epigenetic mechanisms in the pathogenesis of AS. However, the relationship between the progression of AS and DNA methylation is not completely understood. This review will discuss the abnormal changes of DNA methylation in AS, including genome-wide hypermethylation dominating in AS with an increase of age, hypermethylation links with methyl supply and generating hyperhomocysteinemia, and the influence of oxidative stress with the demethylation process by interfering with the hydroxyl-methylation of TET proteins. The review will also summarize the current status of epigenetic treatment, which may provide new direction and potential therapeutic targets for AS.

12.
Front Neurosci ; 15: 734860, 2021.
Article in English | MEDLINE | ID: mdl-34512255

ABSTRACT

Type 3 macular neovascularization (MNV3), or retinal angiomatous proliferation (RAP), is a distinct type of neovascular age-related macular degeneration (AMD), which is a leading cause of vision loss in older persons. During the past decade, systematic investigation into the clinical, multimodal imaging, and histopathological features and therapeutic outcomes has provided important new insight into this disease. These studies favor the retinal origin of MNV3 and suggest the involvement of retinal hypoxia, inflammation, von Hippel-Lindau (VHL)-hypoxia-inducible factor (HIF)-vascular endothelial growth factor (VEGF) pathway, and multiple cell types in the development and progression of MNV3. Several mouse models, including the recently built Rb/p107/Vhl triple knockout mouse model by our group, have induced many of the histological features of MNV3 and provided much insight into the underlying pathological mechanisms. These models have revealed the roles of retinal hypoxia, inflammation, lipid metabolism, VHL/HIF pathway, and retinoblastoma tumor suppressor (Rb)-E2F cell cycle pathway in the development of MNV3. This article will summarize the clinical, multimodal imaging, and pathological features of MNV3 and the diversity of animal models that exist for MNV3, as well as their strengths and limitations.

13.
iScience ; 24(8): 102905, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34430805

ABSTRACT

The mouse eye is used to model central nervous system development, pathology, angiogenesis, tumorigenesis, and regenerative therapies. To facilitate the analysis of these processes, we developed an optimized tissue clearing and depigmentation protocol, termed InVision, that permits whole-eye fluorescent marker tissue imaging. We validated this method for the analysis of normal and degenerative retinal architecture, transgenic fluorescent reporter expression, immunostaining and three-dimensional volumetric (3DV) analysis of retinoblastoma and angiogenesis. We also used this method to characterize material transfer (MT), a recently described phenomenon of horizontal protein exchange that occurs between transplanted and recipient photoreceptors. 3D spatial distribution analysis of MT in transplanted retinas suggests that MT of cytoplasmic GFP between photoreceptors is mediated by short-range, proximity-dependent cellular interactions. The InVision protocol will allow investigators working across multiple cell biological disciplines to generate novel insights into the local cellular networks involved in cell biological processes in the eye.

14.
Exp Eye Res ; 210: 108701, 2021 09.
Article in English | MEDLINE | ID: mdl-34252413

ABSTRACT

Retinitis pigmentosa (RP) is a major cause of inherited blindness, and there is presently no cure for RP. Rd1 mouse is the most commonly used RP animal model. Re-expression of cell cycle proteins in post-mitotic neurons is considered an important mechanism of neurodegenerative diseases, including RP. The retinoblastoma tumor suppressor (Rb) is a major regulator of cell cycle progression, yet its role in rd1 mouse retina and related signaling pathways have never been analyzed. By crossing α-Cre, Rbf/f mice with rd1 mice, p21cip1-/- mice, Cdk1f/f mice and Cdk2f/f mice, we established multiple rd1 mouse models with deletions of Rb gene, Cdkn1a (p21cip1) gene, Cdk1 and Cdk2 gene in the retina. Cdk inhibitor CR8 was injected into the vitreous of rd1 mouse to investigate its effects on photoreceptor survival. Rb gene knockout (KO) induces cell death in excitatory retinal neurons (rods, rod bipolar and ganglions) and ectopic proliferation of retinal cells; but it paradoxically delays the rod death of rd1 mice, which is primarily mediated by the Cdk inhibitor Cdkn1a (p21cip1). Interestingly, p21cip1 protects the ectopic dividing rd1 rod cells by inhibiting Cdk1 and Cdk2. However, inhibiting Cdk1 and Cdk2 in rd1 mice with non-dividing rods only has limited and transient protective effects. Our data suggest that there is no ectopic division of rd1 rod cells, and RbKO induces ectopic division but delays the death of rd1 rod cells. This reveals the important protective role of Rb-p21cip1-Cdk axis in rd1 rod cells. P21cip1 is a potential target for future therapy of RP.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/genetics , Disease Models, Animal , Gene Expression Regulation/physiology , Retinal Degeneration/prevention & control , Retinoblastoma Protein/deficiency , Animals , Apoptosis , CDC2 Protein Kinase/metabolism , Cell Survival/physiology , Cyclin-Dependent Kinase 2/metabolism , Electroretinography , Enzyme Inhibitors/pharmacology , In Situ Nick-End Labeling , Intravitreal Injections , Mice , Mice, Inbred ICR , Mice, Knockout , Microscopy, Fluorescence , Purines/pharmacology , Pyridines/pharmacology , Real-Time Polymerase Chain Reaction , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Rod Photoreceptor Cells/drug effects , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology
15.
Exp Eye Res ; 203: 108417, 2021 02.
Article in English | MEDLINE | ID: mdl-33358768

ABSTRACT

Age-related macular degeneration (AMD) is a leading cause of blindness. Laser-induced nonhuman primate choroidal neovascularization (CNV) is a widely used animal model of neovascular AMD. Subretinal fibrosis (SFb) is the major limiting factor of effective anti-VEGF therapy for neovascular AMD, yet SFb has never been systematically analyzed in the primate CNV model and if VEGF directly affect SFb is unknown. We recruited a large cohort of rhesus macaques to study the occurrence, multimodal imaging and electroretinography (ERG) features, and related cytokines of SFb. Here we show that among 33 rhesus macaques, 88% CNV eyes developed SFb. Spectral domain optical coherence tomography (SD-OCT) identified four types of subretinal hyper-reflective material (SHRM) of SFb in primate. Multimodal imaging is reliable for monitoring SFb and matches the histological results well. Reduced amplitude of oscillatory potentials correlates with the thinning of inner retina layers and is a possible SFb indicator. Iba1+ microglia/macrophage cells infiltrated in the fibrotic lesions, and aqueous cytokine analysis identified four fibrosis-related factors (GM-CSF, IL-10, TGFß2 and VEGF). Unexpectedly, we found sustained expression of VEGF may be an important inducer of SFb, and anti-VEGF therapy actually partially suppresses SFb. Taken together, our data suggest the laser-induced primate SFb model, coupled with multimodal imaging and ERG recording, is a useful system to dissect the pathogenesis and explore the rationale of treatment for SFb; and combined therapy with anti-VEGF and anti-fibrosis agents is necessary for AMD treatment.


Subject(s)
Laser Coagulation/adverse effects , Retina/pathology , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis Inhibitors/therapeutic use , Animals , Aqueous Humor/metabolism , Choroidal Neovascularization/diagnostic imaging , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/etiology , Choroidal Neovascularization/metabolism , Cytokines/metabolism , Electroretinography , Female , Fibrosis/diagnostic imaging , Fibrosis/drug therapy , Fibrosis/etiology , Fibrosis/metabolism , Fluorescein Angiography , Intravitreal Injections , Macaca mulatta , Male , Multimodal Imaging , Photic Stimulation , Ranibizumab/therapeutic use , Retina/metabolism , Tomography, Optical Coherence
16.
Front Cell Infect Microbiol ; 11: 739707, 2021.
Article in English | MEDLINE | ID: mdl-35004341

ABSTRACT

Graves' disease (GD) is a clinical syndrome with an enlarged and overactive thyroid gland, an accelerated heart rate, Graves' orbitopathy (GO), and pretibial myxedema (PTM). GO is the most common extrathyroidal complication of GD. GD/GO has a significant negative impact on the quality of life. GD is the most common systemic autoimmune disorder, mediated by autoantibodies to the thyroid-stimulating hormone receptor (TSHR). It is generally accepted that GD/GO results from complex interactions between genetic and environmental factors that lead to the loss of immune tolerance to thyroid antigens. However, the exact mechanism is still elusive. Systematic investigations into GD/GO animal models and clinical patients have provided important new insight into these disorders during the past 4 years. These studies suggested that gut microbiota may play an essential role in the pathogenesis of GD/GO. Antibiotic vancomycin can reduce disease severity, but fecal material transfer (FMT) from GD/GO patients exaggerates the disease in GD/GO mouse models. There are significant differences in microbiota composition between GD/GO patients and healthy controls. Lactobacillus, Prevotella, and Veillonella often increase in GD patients. The commonly used therapeutic agents for GD/GO can also affect the gut microbiota. Antigenic mimicry and the imbalance of T helper 17 cells (Th17)/regulatory T cells (Tregs) are the primary mechanisms proposed for dysbiosis in GD/GO. Interventions including antibiotics, probiotics, and diet modification that modulate the gut microbiota have been actively investigated in preclinical models and, to some extent, in clinical settings, such as probiotics (Bifidobacterium longum) and selenium supplements. Future studies will reveal molecular pathways linking gut and thyroid functions and how they impact orbital autoimmunity. Microbiota-targeting therapeutics will likely be an essential strategy in managing GD/GO in the coming years.


Subject(s)
Gastrointestinal Microbiome , Graves Disease , Graves Ophthalmopathy , Animals , Humans , Mice , Quality of Life , Receptors, Thyrotropin
17.
Front Microbiol ; 12: 758064, 2021.
Article in English | MEDLINE | ID: mdl-35095787

ABSTRACT

Porcine circovirus type 3 (PCV3), a novel circovirus, imposes great burdens on the global pig industry. The penside tests for detecting PCV3 are critical for assessing the epidemiological status and working out disease prevention and control programs due to the unavailability of a commercial vaccine. A one-step molecular assay based on visual loop-mediated isothermal amplification (vLAMP) was developed for simple and rapid detection of PCV3. We compared its sensitivity and specificity with TaqMan quantitative real-time polymerase chain reaction (qPCR) and applied the developed assay in the epidemiological study of (n = 407) pooled swine sera collected from almost the entire mainland China during the years 2017-2018. We also explored the feasibility of the vLAMP assay for detecting raw samples without a prior DNA isolation step to expand its application capability. Results showed that the vLAMP assay could reliably detect the PCV3 cap gene with a detection limit of 10 DNA copies equal to that of the Taqman qPCR assay. In the epidemiological study, the PCV3 positive detection rate for 407 swine pooled sera detected by the vLAMP assay was 37.35% (152/407), whereas it was 39.01% (159/407) for Taqman qPCR. For the detection method without genome extraction, the results kept satisfactory specificity (100%) but displayed lower sensitivity (100% for CT < 32), indicating the direct detection is not sensitive enough to discriminate the samples with low viral loads. The one-step vLAMP is a convenient, rapid, and cost-effective diagnostic for penside detection and will enable the epidemiological surveillance of PCV3, which has widely spread in mainland China.

18.
Ophthalmic Res ; 64(2): 168-177, 2021.
Article in English | MEDLINE | ID: mdl-32674100

ABSTRACT

The gut microbiome has important physiological functions and plays an indispensable role in the human body. Currently, there are an increasing number of studies revealing the close correlation between dysbiosis of the gut microbiome and a variety of autoimmune diseases, including autoimmune uveitis. This brief review summarizes recent literature regarding the relationship between dysbiosis and the occurrence and development of autoimmune uveitis. Dysbiosis participates in the pathogenesis of autoimmune uveitis largely by 4 mechanisms: antigenic mimicry, disturbance of intestinal immune homeostasis, destruction of the intestinal barrier, and reduction of beneficial anti-inflammatory metabolites. Further elucidation of these mechanisms will facilitate the treatment of the gut-microbiome-relevant autoimmune diseases by potential therapeutic strategies, such as antibiotics, probiotics, diet modifications, and fecal microbial transplantation.


Subject(s)
Autoimmune Diseases/immunology , Gastrointestinal Microbiome/immunology , Immunity, Innate , Uveitis/immunology , Animals , Humans
19.
Int J Ophthalmol ; 13(10): 1667-1670, 2020.
Article in English | MEDLINE | ID: mdl-33078120

ABSTRACT

AIM: To assess the prevalence of meibomian gland dysfunction (MGD) in staffs and faculty members of Sichuan University, China. METHODS: The records of the annually systemic physical examination of 4404 consecutive staffs and faculty members of Sichuan University were analyzed retrospectively. Ocular symptoms and signs of ocular surface were evaluated. RESULTS: MGD was diagnosed in 1424 participants (32.3%), with a mean age of 43.0±9.6y. Of these, 718 (50.4%) were females and no significant difference was found between males and females. The highest prevalence was found in the age 50-59y (36.0%). Logistic regression analysis showed that age is an impact factor of MGD (P<0.001, odds ratio=1.014). CONCLUSION: The prevalence of MGD in staffs and faculty members of a Chinese university is 32.3%, and increases with age.

20.
J Clin Invest ; 130(4): 2054-2068, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32175920

ABSTRACT

Inherited retinal degenerations (IRDs) are characterized by the progressive loss of photoreceptors and represent one of the most prevalent causes of blindness among working-age populations. Cyclic nucleotide dysregulation is a common pathological feature linked to numerous forms of IRD, yet the precise mechanisms through which this contributes to photoreceptor death remain elusive. Here we demonstrate that cAMP induced upregulation of the dependence receptor neogenin in the retina. Neogenin levels were also elevated in both human and murine degenerating photoreceptors. We found that overexpressing neogenin in mouse photoreceptors was sufficient to induce cell death, whereas silencing neogenin in degenerating murine photoreceptors promoted survival, thus identifying a pro-death signal in IRDs. A possible treatment strategy is modeled whereby peptide neutralization of neogenin in Rd1, Rd10, and Rho P23H-knockin mice promotes rod and cone survival and rescues visual function as measured by light-evoked retinal ganglion cell recordings, scotopic/photopic electroretinogram recordings, and visual acuity tests. These results expose neogenin as a critical link between cAMP and photoreceptor death, and identify a druggable target for the treatment of retinal degeneration.


Subject(s)
Membrane Proteins/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Retinal Degeneration/metabolism , Retinal Ganglion Cells/metabolism , Animals , Cell Line, Tumor , Cyclic AMP/genetics , Cyclic AMP/metabolism , Disease Models, Animal , Gene Knock-In Techniques , HEK293 Cells , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Mice , Mice, Inbred ICR , Mice, Transgenic , Photoreceptor Cells, Vertebrate/pathology , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Ganglion Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...