Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Vet Microbiol ; 289: 109957, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160508

ABSTRACT

It is a common sense that porcine reproductive and respiratory syndrome virus (PRRSV) infection could cause immune failure of classical swine fever (CSF) vaccine, and porcine alveolar macrophages (PAMs) are the target cells of both. To elucidate the role of macrophage polarization in PRRSV infection induced CSF vaccine failure, an immortal porcine alveolar macrophage line PAM39 cell line was used to investigate the effect of PRRSV or/and CSFV C-strain (CSFV-C) infection on macrophage polarization in vitro. Interestingly, PRRSV single infection or PRRSV co-infection with CSFV-C promoted PAM39 cells to M1, while CSFV-C single infection induced PAM39 cells to M2. After the construction of M1 and M2 PAM39 cells polarization models, M1 polarized PAM39 cells were found to inhibit the replication of CSFV-C, and Chinese medicine such as matrine, ginsenosides and astragalus polysaccharides could alleviate the polarization of PAM39 cells and the replication of CSFV-C. Furthermore, interferon (IFN)-γ and lipopolysaccharide (LPS) co-stimulation induced NF-κB activation while matrine treatment blocked M1 polarization-induced NF-κB pathway activation. These findings provided a theoretical basis for designing a new strategy to improve the immune effect of CSFV-C based on porcine alveolar macrophage polarization subtypes.


Subject(s)
Classical Swine Fever , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Vaccines , Swine , Animals , NF-kappa B/metabolism , Matrines , Classical Swine Fever/prevention & control , Macrophages, Alveolar , Virus Replication , Porcine Reproductive and Respiratory Syndrome/metabolism , Swine Diseases/metabolism
2.
Front Vet Sci ; 10: 1280177, 2023.
Article in English | MEDLINE | ID: mdl-38089706

ABSTRACT

Porcine circoviruses (PCVs) are members of the genus Circovirus of the family Circoviridae, and four species of PCVs have been discovered and named PCV1-PCV4, respectively. With the first report of PCV3 in America in 2016, the pathogenic variant was found to be associated with various clinical features, called porcine circovirus associated disease (PCVAD), including multisystemic inflammation, porcine dermatitis and nephropathy syndrome (PDNS), reproductive disorders, respiratory or digestive disorders. Increasing experimental data have shown that PCV3 is widespread around the world, but the failure of virus isolation and propagation has put obstacles in the way of PCV3 research. Moreover, a large number of reports demonstrate that PCV3 usually co-infects with other pathogens in pigs. Thus, whether PCV3 alone causes clinical manifestations needs to be fully discussed. In addition, the host cell immune response was activated during PCV3 infection, and PCV3-encoded proteins may regulate immune responses to facilitate its replication. An in-depth understanding of PCV3 pathogenesis and immune regulation strategies is critical for PCVAD prevention. In this review, the advances in pathogenicity and innate immune modulation of PCV3 were summarized, which could deepen the understanding of this virus and PCV3-related diseases.

3.
Vet Microbiol ; 284: 109825, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453262

ABSTRACT

PRRSV and CSFV are both common infectious pathogens in porcine populations, posing significant threats to the healthy development of the porcine industry. Vaccine immunization is the main way to prevent and control these two diseases. Increasing studies have demonstrated that there is an interaction between PRRSV co-infection and CSFV vaccine immune failure. To investigate the effect of PRRSV infection on CSFV proliferation and its molecular mechanism, the proliferation dynamics of PRRSV/CSFV, the NLRP3 inflammasome components, and IL-1ß expression levels were detected in PRRSV/CSFV alone- or co-infection. Subsequently, the relationship between inflammasome activation, IL-1ß expression, and CSFV proliferation was analyzed through the construction of an inflammasome activation model, specific siRNA interference, and specific inhibitor treatment. The results showed that CSFV infection had a poor regulatory effect on NLRP3 inflammasome activation and IL-1ß maturation, but PRRSV and CSFV co-infection could significantly up-regulate the expression of NLRP3 and ASC, induce Caspase-1 activation, and promote IL-1ß maturation. It was further determined that NLRP3 inflammasome components played important roles in IL-1ß maturation and inhibiting CSFV proliferation by PRRSV. Additional experiments indicated that PRRSV replication is essential for NLRP3 inflammasome activation, IL-1ß maturation, and CSFV proliferation inhibition. More importantly, NLRP3 inflammasome activation is regulated by the TLR4-MyD88-NF-κB pathways. In conclusion, PRRSV infection induced IL-1ß maturation by activating the NLRP3 inflammasome through the TLR4-MyD88-NF-κB pathways and then inhibited the proliferation of CSFV. These data further improved the theoretical basis for PRRSV inducing inflammatory factors and leading to the failure of CSFV immunization.


Subject(s)
Coinfection , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Vaccines , Swine , Animals , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , NF-kappa B/metabolism , Signal Transduction , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptor 4 , Coinfection/veterinary , Cell Proliferation , Interleukin-1beta/genetics
4.
Vet Microbiol ; 273: 109513, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35952491

ABSTRACT

PRRSV and CSFV are both the main pathogens of pigs and pose great threats to the pig industry. Previous studies have shown that PRRSV infection or attenuated virus vaccination can reduce the antibody level of attenuated CSFV vaccine and even cause immune failure. The higher pro-inflammatory cytokines induced by PRRSV might play a significant role in inhibiting the proliferation of CSFV-C. However, the molecular mechanism has not been elucidated yet. Here, the effect of IL-1ß, a central mediator of immune-regulating inflammatory responses, on CSFV-C proliferation was investigated, as well as the mechanisms responsible for the production of IL-1ß in the PRRSV and CSFV-C co-infection systems. The results showed that co-infection could significantly increase IL-1ß production both at mRNA and protein levels with the infection progressing, and the IL-1ß upregulation was mainly triggered by PRRSV infection. Additional experiments indicated that IL-1ß inhibited the proliferation of CSFV-C in a cell-type independent manner at the replication and release stages. Furthermore, the IL-1ß production induced via the TLR4/MyD88 pathway and the downstream signaling pathways NF-κB, ERK1/2, P38, and JNK were involved by treatment with specific inhibitors or siRNA knockdown assays. Finally, we clarified that the NLRP3 inflammasome played a meaningful role in the maturation and release of IL-1ß. Together, the accumulated results provided a deeper understanding of the vaccination failure of CSFV caused by PRRSV co-infection as well as targets for the development of novel approaches for the vaccination and control of CSF.


Subject(s)
Coinfection , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Animals , Cell Proliferation , Coinfection/veterinary , Inflammasomes/genetics , Interleukin-1beta/genetics , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Porcine respiratory and reproductive syndrome virus/metabolism , Swine , Toll-Like Receptor 4/genetics
5.
Virus Res ; 319: 198854, 2022 Oct 02.
Article in English | MEDLINE | ID: mdl-35788015

ABSTRACT

It is a common phenomenon that PRRSV infection can interfere with the protective efficacy of the CSFV vaccine in clinical settings, and no effective treatment is available. In our previous study, we found that PRRSV infection could inhibit the replication of CSFV-C by promoting the high expression of inflammatory cytokines. In order to further investigate whether Chinese medicine could alleviate the inhibition effect, the PAM39 cells model, which was co-infected with PRRSV and CSFV-C, was established. The effects of Chinese medicine on this co-infection model, as well as the effect of astragalus polysaccharide on the TLRs/NF-κB/TNF-α pathways, were investigated. Our results demonstrated that PAM39 cells inoculated with different pathogenic PRRSV significantly inhibited the replication of CSFV-C and up-regulated the major inflammatory mediators, including TNF-α. For the following studies, 50 µM of astragalus polysaccharide was selected from six kinds of representative Chinese medicine based on their cytotoxicity, viral titers, and inflammatory mediators. Further experiments indicated that astragalus polysaccharide could alleviate the inhibition of CSFV-C replication in the co-infection group with no influence on cell viability. In addition, astragalus polysaccharide treatment clearly reduced P65 phosphorylation and down-regulated the expression of TLR7, TLR9, and TNF-α in co-infection group, implying that the TLRs/NF-κB/TNF-α pathways may play an important role in astragalus polysaccharide's anti-inflammatory response. In conclusion, astragalus polysaccharide treatment alleviated PRRSV-mediated inhibition of CSFV-C replication via the TLRs/NF-κB/TNF-α pathways, and the molecular mechanism of PRRSV co-infection leading to the failure of CSFV vaccine immunization was partially elucidated, providing a scientific basis for effective CSF prevention and control in pig farms.


Subject(s)
Classical Swine Fever Virus , Coinfection , Porcine respiratory and reproductive syndrome virus , Animals , Inflammation Mediators , NF-kappa B/metabolism , Polysaccharides/pharmacology , Porcine respiratory and reproductive syndrome virus/metabolism , Swine , Tumor Necrosis Factor-alpha/genetics
6.
Animals (Basel) ; 12(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35739924

ABSTRACT

Porcine circovirus 3 (PCV3) is an emerging virus, causing substantial economic losses in pig populations, that was first detected in 2016. Furthermore, the virus has already been reported in Europe, the Americas, and Asia, including China, indicating that the virus has spread worldwide. However, the molecular epidemiology of PCV3 still needs further study. To investigate PCV3 epidemiological characteristics in China, 2707 serum samples of pigs were randomly collected from 17 provinces in China between September 2018 and March 2022 and analyzed via PCR assays. The study showed that PCV3 infection was prevalent in the overall population with 31.07% (841/2707) and 100.0% (17/17) at sample and province levels, respectively, though the positivity rate of PCV3 varied from 7.41 to 70.0% in different provinces, suggesting that PCV3 infection has a widespread distribution in China. We selected 22 serum samples from different regions that had high levels of viral DNA for amplification and sequenced their ORF2 (Cap) gene. According to the phylogenetic analysis, all isolates in the current study could be grouped into two separate subclades, with 15 strains belonging to clade 3a and 7 strains belonging to clade 3b, indicating that PCV3a and PCV3b were the predominant subtypes in the regions of China studied. Meanwhile, additional analysis revealed that the capsid gene sequences identified in this study displayed 97.46~99.8% nucleotide (nt) and 97.06~100% amino acid (aa) sequence similarity with other PCV3 available reference strains, respectively. In general, our studies provide important insights for understanding the prevalence and evolution of PCV3 in China and will guide future efforts to develop measures for preventing and controlling the disease.

7.
Viruses ; 14(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35458485

ABSTRACT

Suid herpesvirus 1 (SuHV-1), known as pseudorabies virus (PRV), is one of the most devastating swine pathogens in China, particularly the sudden occurrence of PRV variants in 2011. The higher pathogenicity and cross-species transmission potential of the newly emerged variants caused not only colossal economic losses, but also threatened public health. To uncover the underlying pathogenesis of PRV variants, Tandem Mass Tag (TMT)-based proteomic analysis was performed to quantitatively screen the differentially expressed cellular proteins in PRV-infected Vero cells. A total of 7072 proteins were identified and 960 proteins were significantly regulated: specifically 89 upregulated and 871 downregulated. To make it more credible, the expression of XRCC5 and XRCC6 was verified by western blot and RT-qPCR, and the results dovetailed with the proteomic data. The differentially expressed proteins were involved in various biological processes and signaling pathways, such as chaperonin-containing T-complex, NIK/NF-κB signaling pathway, DNA damage response, and negative regulation of G2/M transition of mitotic cell cycle. Taken together, our data holistically outline the interactions between PRV and host cells, and our results may shed light on the pathogenesis of PRV variants and provide clues for pseudorabies prevention.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Swine Diseases , Animals , Chlorocebus aethiops , Proteomics , Signal Transduction , Swine , Vero Cells
8.
Transbound Emerg Dis ; 68(4): 2017-2027, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32979245

ABSTRACT

Classical swine fever (CSF), which is caused by the CSF virus (CSFV), remains one of the most economically important diseases of the global swine industry. Rapid and reliable detection of CSFV is critical for controlling CSF. In this study, a novel fluorescent probe-based real-time reverse transcription recombinase-aided amplification (rRT-RAA) assay, targeting a highly conserved position within the 5' non-translated region (5'NTR) among all CSFV genotypes, was developed for the detection of CSFV. The assay is highly specific to CSFV and does not cross react with other important viruses. Sensitivity analysis revealed that the assay could detect two 50% tissue culture infectious dose (TCID50 ) of CSFV RNA per reaction at 95% probability, which is comparable to that of a documentary reverse transcription quantitative PCR (RT-qPCR) assay for CSFV. The rRT-RAA assay exhibited good reproducibility, with intra- and inter-assay coefficient of variation values of <8.0%. Of the 135 samples (including 102 clinical tissue samples and 33 different cell culture isolates of CSFV), 50 and 52 samples were tested positive for CSFV by rRT-RAA and RT-qPCR, respectively. The coincidence rate between the two assays was 98.5% (133/135). Further linear regression analysis showed a significant correlation between the rRT-RAA and RT-qPCR assays with an R2 value of 0.8682. Interestingly, the amplification products of the rRT-RAA assay could be directly observed with naked eyes under a portable blue light imager, making it possible for an on-site testing. Our results indicate that the rRT-RAA assay is a robust diagnostic tool for the rapid detection of CSFV.


Subject(s)
Classical Swine Fever Virus , Classical Swine Fever , Swine Diseases , Animals , Classical Swine Fever/diagnosis , Classical Swine Fever Virus/genetics , Fluorescent Dyes , Recombinases , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Reverse Transcription , Sensitivity and Specificity , Swine
9.
Vet Microbiol ; 247: 108786, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32768230

ABSTRACT

Pseudorabies virus (PRV) is one of the most notorious pathogens in the global pig industry. During infection, viruses may evolve various strategies, such as modulating stress granules (SGs) formation, to create an optimal surroundings for viral replication. However, the interplay between PRV infection and SGs formation remains largely unknown. Here we showed that PRV infection markedly blocked SGs formation induced by sodium arsenate (AS) and DL-Dithiothreitol (DTT). Accordantly, the phosphorylation of eIF2α was markedly inhibited in PRV-infected cells, although two eIF2α kinases double-stranded RNA-activated protein kinase (PKR) and PKR-like ER kinase (PERK) were activated during PRV infection. Furthermore, we also found that the dephosphorylation of eIF2α occurred at the early stage of virus infection but without the elevated production of GADD34 and PP1. Moreover, inhibition of PP1 activity by salubrinal could counteract PRV-mediated eIF2α dephosphorylation partially and inhibit virus replication. Our results revealed that, on the one hand, PRV infection activated eIF2α kinases PKR (latter inhibited) and PERK, and on the other hand, PRV encoded-functions dephosphorylated eIF2α and inhibited SGs formation to facilitate virus replication.


Subject(s)
Cytoplasmic Granules/physiology , Cytoplasmic Granules/virology , Eukaryotic Initiation Factor-2/metabolism , Host-Pathogen Interactions , Stress, Physiological , Animals , Cell Line , Eukaryotic Initiation Factor-2/genetics , Herpesvirus 1, Suid , Phosphorylation , Pseudorabies , Swine , Virus Replication , eIF-2 Kinase/metabolism
10.
Vet Microbiol ; 234: 25-33, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31213269

ABSTRACT

Porcine productive and respiratory syndrome virus (PRRSV) and classical swine fever virus (CSFV) both are major pathogens of swine that pose a great threat to the Chinese pig industry. It has been found that PRRSV infection can lead to vaccination failure of CSFV C strain-derived modified live vaccine (CSFV-C) by interfering with the immune responses to the latter. To investigate whether PRRSV can suppress CSFV-C replication, we created a 3D4/21-based cell line PAM39 that is susceptible to both viruses by expressing PRRSV receptors CD163 and CD169, and then investigated their interplay under the condition of either sequential or simultaneous co-infection. The most significant suppressive effect came from the sequential infection when the cells were first infected by PRRSV and then followed by CSFV-C at an interval of 6 h. In addition, this effect was independent of PRRSV strains. Mechanistically, PRRSV induced an elevated level of a subset of pro-inflammatory cytokines, especially tumor necrosis factor (TNF-α), through the nuclear factor κB (NF-κB) signaling pathway to inhibit the replication of CSFV-C in vitro. Thus, our studies provide an alternative explanation on PRRSV-induced CSFV vaccination failure, and this has an important implication in CSF vaccination and control.


Subject(s)
Classical Swine Fever Virus/physiology , Porcine respiratory and reproductive syndrome virus , Tumor Necrosis Factor-alpha/immunology , Virus Replication , Animals , Antigens, CD/genetics , Antigens, Differentiation, Myelomonocytic/genetics , Cell Line , Fluorescent Antibody Technique , NF-kappa B/metabolism , RNA, Small Interfering , Receptors, Cell Surface/genetics , Sialic Acid Binding Ig-like Lectin 1/genetics , Signal Transduction , Swine , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...