Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(3): 030601, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38307065

ABSTRACT

The quantum supremacy experiment, such as Google Sycamore [F. Arute et al., Nature (London) 574, 505 (2019).NATUAS0028-083610.1038/s41586-019-1666-5], poses a great challenge for classical verification due to the exponentially increasing compute cost. Using a new-generation Sunway supercomputer within 8.5 d, we provide a direct verification by computing 3×10^{6} exact amplitudes for the experimentally generated bitstrings, obtaining a cross-entropy benchmarking fidelity of 0.191% (the estimated value is 0.224%). The leap of simulation capability is built on a multiple-amplitude tensor network contraction algorithm which systematically exploits the "classical advantage" (the inherent "store-and-compute" operation mode of von Neumann machines) of current supercomputers, and a fused tensor network contraction algorithm which drastically increases the compute efficiency on heterogeneous architectures. Our method has a far-reaching impact in solving quantum many-body problems, statistical problems, as well as combinatorial optimization problems.

2.
Sci Bull (Beijing) ; 67(11): 1170-1181, 2022 06 15.
Article in English | MEDLINE | ID: mdl-36545983

ABSTRACT

During the era of global warming and highly urbanized development, extreme and high impact weather as well as air pollution incidents influence everyday life and might even cause the incalculable loss of life and property. Despite the vast development of atmospheric models, there still exist substantial numerical forecast biases objectively. To accurately predict extreme weather, severe air pollution, and abrupt climate change, numerical atmospheric model requires not only to simulate meteorology and atmospheric compositions simultaneously involving many sophisticated physical and chemical processes but also at high spatiotemporal resolution. Global integrated atmospheric simulation at spatial resolutions of a few kilometers remains challenging due to its intensive computational and input/output (I/O) requirement. Through multi-dimension-parallelism structuring, aggressive and finer-grained optimizing, manual vectorizing, and parallelized I/O fragmenting, an integrated Atmospheric Model Across Scales (iAMAS) was established on the new Sunway supercomputer platform to significantly increase the computational efficiency and reduce the I/O cost. The global 3-km atmospheric simulation for meteorology with online integrated aerosol feedbacks with iAMAS was scaled to 39,000,000 processor cores and achieved the speed of 0.82 simulation day per hour (SDPH) with routine I/O, which enabled us to perform 5-day global weather forecast at 3-km horizontal resolution with online natural aerosol impacts. The results demonstrate the promising future that the increasing of spatial resolution to a few kilometers with online integrated aerosol feedbacks may significantly improve the global weather forecast.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Feedback , Air Pollution/analysis , Weather , Aerosols/analysis
3.
Sci Bull (Beijing) ; 66(2): 111-119, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-36654217

ABSTRACT

High performance computing (HPC) is a powerful tool to accelerate the Kohn-Sham density functional theory (KS-DFT) calculations on modern heterogeneous supercomputers. Here, we describe a massively parallel implementation of discontinuous Galerkin density functional theory (DGDFT) method on the Sunway TaihuLight supercomputer. The DGDFT method uses the adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field (SCF) iteration to solve the KS equations with high precision comparable to plane-wave basis set. In particular, the DGDFT method adopts a two-level parallelization strategy that deals with various types of data distribution, task scheduling, and data communication schemes, and combines with the master-slave multi-thread heterogeneous parallelism of SW26010 processor, resulting in large-scale HPC KS-DFT calculations on the Sunway TaihuLight supercomputer. We show that the DGDFT method can scale up to 8,519,680 processing cores (131,072 core groups) on the Sunway TaihuLight supercomputer for studying the electronic structures of two-dimensional (2D) metallic graphene systems that contain tens of thousands of carbon atoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...