Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Biosensors (Basel) ; 12(5)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35624574

ABSTRACT

High sensitivity and reproducibility are highly desirable to a SERS sensor in diverse detection applications. Moreover, it is a great challenge to determine how to promote the target molecules to be more concentrated on the hotspots of the SERS substrate by engineering a surface with switching interfacial wettability. Along these lines, wafer-scale uniformly hydrophobic silicon nanorods arrays (SiNRs) decorated with Au nanoparticles were designed as the SERS substrate. Typically, the SERS substrate was fabricated by enforcing the polystyrene (PS) sphere self-assembly, as well as the plasma etching and the magnetron sputtering techniques. Consequently, the SERS substrate was treated by soaking within a n-dodecyl mercaptan (NDM) solution at different times in order to obtain adjustable wettabilities. By leveraging the electromagnetic enhancement resulted from the Au nanostructures and enrichment effect induced by the hydrophobicity, the SERS substrate is endowed with efficient SERS capabilities. During the detection of malachite green (MG), an ultralow relative standard deviation (RSD) 4.04-6.14% is achieved and the characteristic signal of 1172 cm-1 can be detected as low as 1 ng/mL. The proposed SiNRs' structure presents outstanding SERS activity with sensitivity and reproducibility rendering thus an ideal candidate for potential application in analytical detection fields.


Subject(s)
Metal Nanoparticles , Nanotubes , Pesticide Residues , Gold , Hydrophobic and Hydrophilic Interactions , Reproducibility of Results , Silicon
2.
Langmuir ; 36(39): 11422-11428, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-32862650

ABSTRACT

Understanding of dynamic behaviors of gas bubbles on solid surfaces has significant impacts on gas-involving electrochemical reactions, mineral flotation, and so on in industry. Contact angle (θ) is widely employed to characterize the wetting behaviors of bubbles on solid surfaces; however, it usually fluctuates within the bubble's advancing (θa) and receding (θr) range. Although the term of most-stable contact angle (θms) was defined previously as the closest valuable approximation for thermodynamically meaningful contact angle for a droplet on a solid surface, it has not been widely studied; and the precise θms measurement methods are inadequate to describe bubbles' wetting behaviors on solid surfaces. Herein, we proposed to take θms as the mean value of θa and θr, as a more accurate descriptor of gas bubbles' dynamic behaviors on nonideal solid surfaces, similar to the definition of droplets' θms on solid surfaces. The feasibility and accuracy of the proposed θms have been evidenced by recording the bubbles' contacting behaviors on solid surfaces with varied wettabilities. In addition, it was found that the contact angle hysteresis (δ), as the difference between θa and θr, reached its maximum value when θms approached 90°, regardless of the roughness (r) of the substrates. Finally, built on the above concept, the lateral adhesion force (f) of the gas bubble on the solid interface, which worked on the three-phase contact line (TPCL) of an individual bubble on a solid surface against its lateral motion during the bubble advancing or receding process, was described quantitatively by combining θa, θr, and the liquid-gas interfacial tension (γlg). Experimental and theoretical data jointly confirmed that f reached its maximum value at θms ∼ 90°, namely, a "super-sticky" state, which described the dynamically most sluggish movement of the bubble along the solid surface.

3.
ACS Appl Mater Interfaces ; 12(20): 23627-23634, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32348671

ABSTRACT

The bubbles electrochemically generated by gas evolution reactions are commonly driven off the electrode by buoyancy, a weak force used to overcome bubble adhesion barriers, leading to low gas-transporting efficiency. Herein, a Janus electrode with asymmetric wettability has been prepared by modifying two sides of a porous stainless-steel mesh electrode, with superhydrophobic polytetrafluoroethylene (PTFE) and Pt/C (or Ir/C) catalyst with well-balanced hydrophobicity, respectively, affording unidirectional transportation of as-formed gaseous hydrogen and oxygen from the catalyst side to the gas-collecting side during water splitting. "Bubble-free" electrolysis was realized while "floating" the Janus electrode on the electrolyte. Antibuoyancy through-mesh bubble transportation was observed while immersing the electrode with the PTFE side downward. The wettability gradient within the electrode endowed sticky states of bubbles on the catalyst side, resulting in efficient bubble-free gas transportation with 15-fold higher current density than submerged states.

4.
ACS Appl Mater Interfaces ; 9(21): 17865-17871, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28493666

ABSTRACT

Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.

5.
Nanoscale ; 8(23): 12073-80, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27249547

ABSTRACT

A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films. The assembled flexible, transparent electronic gas sensor exhibits high sensing performance towards NH3 gas concentrations ranging from 100 ppb to 100 ppm, reliable transparency (90.3% at 550 nm) for the PPANI/rGO-FPANI film (6 h sample), fast response/recovery time (36 s/18 s), and robust flexibility without an obvious performance decrease after 1000 bending/extending cycles. The excellent sensing performance could probably be ascribed to the synergetic effects and the relatively high surface area (47.896 m(2) g(-1)) of the PPANI/rGO-FPANI network films, the efficient artificial neural network sensing channels, and the effectively exposed active surfaces. It is expected to hold great promise for developing flexible, cost-effective, and highly sensitive electronic sensors with real-time analysis to be potentially integrated into wearable flexible electronics.

SELECTION OF CITATIONS
SEARCH DETAIL