Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167140, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548092

ABSTRACT

Heart failure (HF) is one of the major causes of death among diabetic patients. Although studies have shown that curcumin analog C66 can remarkably relieve diabetes-associated cardiovascular and kidney complications, the role of SJ-12, SJ-12, a novel curcumin analog, in diabetic cardiomyopathy and its molecular targets are unknown. 7-week-old male C57BL/6 mice were intraperitoneally injected with single streptozotocin (STZ) (160 mg/kg) to develop diabetic cardiomyopathy (DCM). The diabetic mice were then treated with SJ-12 via gavage for two months. Body weight, fast blood glucose, cardiac utrasonography, myocardial injury markers, pathological morphology of the heart, hypertrophic and fibrotic markers were assessed. The potential target of SJ-12 was evaluated via RNA-sequencing analysis. The O-GlcNAcylation levels of SP1 were detected via immunoprecipitation. SJ-12 effectively suppressed myocardial hypertrophy and fibrosis, thereby preventing heart dysfunction in mice with STZ-induced heart failure. RNA-sequencing analysis revealed that SJ-12 exerted its therapeutic effects through the modulation of the calcium signaling pathway. Furthermore, SJ-12 reduced the O-GlcNAcylation levels of SP1 by inhibiting O-linked N-acetylglucosamine transferase (OGT). Also, SJ-12 stabilized Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2a (SERCA2a), a crucial regulator of calcium homeostasis, thus reducing hypertrophy and fibrosis in mouse hearts and cultured cardiomyocytes. However, the anti-fibrotic effects of SJ-12 were not detected in SERCA2a or OGT-silenced cardiomyocytes, indicating that SJ-12 can prevent DCM by targeting OGT-dependent O-GlcNAcylation of SP1.These findings indicate that SJ-12 can exert cardioprotective effects in STZ-induced mice by reducing the O-GlcNAcylation levels of SP1, thus stabilizing SERCA2a and reducing myocardial fibrosis and hypertrophy. Therefore, SJ-12 can be used for the treatment of diabetic cardiomyopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Mice, Inbred C57BL , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/drug therapy , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Male , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/drug therapy , Streptozocin , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Fibrosis , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics , Calcium Signaling/drug effects
2.
Article in English | MEDLINE | ID: mdl-38547517

ABSTRACT

ABSTRACT: Chronic kidney disease (CKD) is a significant global health threat that imposes a substantial burden on both individuals and societies. CKD frequently correlates with cardiovascular events, particularly left ventricular hypertrophy (LVH), which contributes to the high mortality rate associated with CKD. Fibroblast growth factor (FGF) 23, a hormone primarily involved in regulating calcium and phosphorus metabolism, has been identified as a major risk factor for LVH in CKD patients. Elevated serum FGF23 levels are known to induce LVH and myocardial fibrosis by activating the FGF receptor 4 (FGFR4) signal pathway. Therefore, targeting FGFR4 and its downstream signaling pathways holds potential as a treatment strategy for cardiac dysfunction in CKD. In our current study, we have discovered that Hypericin, a key component derived from Hypericum perforatum, has the ability to alleviate CKD-related LVH by targeting the FGFR4/phospholipase C gamma 1 (PLCγ1) signaling pathway. Through in vitro experiments using rat cardiac myocyte H9c2 cells, we observed that Hypericin effectively inhibits FGF23-induced hypertrophy and fibrosis by suppressing the FGFR4/PLCγ1/calcineurin/nuclear factor of activated T-cell (NFAT3) signaling pathway. Additionally, our in vivo studies using mice on a high phosphate diet and rat models of 5/6 nephrectomy demonstrated that Hypericin has therapeutic effects against CKD-induced LVH by modulating the FGFR4/PLCγ1/calcineurin/NFAT3 signaling pathway. In conclusion, our research highlights the potential of Hypericin as a candidate for the treatment of CKD-induced cardiomyopathy. By suppressing the FGFR4/PLCγ1 signaling pathway, Hypericin shoaws promise in attenuating LVH and myocardial fibrosis associated with CKD.

3.
Am J Physiol Renal Physiol ; 326(4): F584-F599, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38299214

ABSTRACT

Cardiovascular disease (CVD) is the major cause of death in chronic kidney disease (CKD) and is associated with high circulating fibroblast growth factor (FGF)23 levels. It is unresolved whether high circulating FGF23 is a mere biomarker or pathogenically contributes to cardiomyopathy. It is also unknown whether the C-terminal FGF23 peptide (cFGF23), a natural FGF23 antagonist proteolyzed from intact FGF23 (iFGF23), retards CKD progression and improves cardiomyopathy. We addressed these questions in three murine models with high endogenous FGF23 and cardiomyopathy. First, we examined wild-type (WT) mice with CKD induced by unilateral ischemia-reperfusion and contralateral nephrectomy followed by a high-phosphate diet. These mice were continuously treated with intraperitoneal implanted osmotic minipumps containing either iFGF23 protein to further escalate FGF23 bioactivity, cFGF23 peptide to block FGF23 signaling, vehicle, or scrambled peptide as negative controls. Exogenous iFGF23 protein given to CKD mice exacerbated pathological cardiac remodeling and CKD progression, whereas cFGF23 treatment improved heart and kidney function, attenuated fibrosis, and increased circulating soluble Klotho. WT mice without renal insult placed on a high-phosphate diet and homozygous Klotho hypomorphic mice, both of whom develop moderate CKD and clear cardiomyopathy, were treated with cFGF23 or vehicle. Mice treated with cFGF23 in both models had improved heart and kidney function and histopathology. Taken together, these data indicate high endogenous iFGF23 is not just a mere biomarker but pathogenically deleterious in CKD and cardiomyopathy. Furthermore, attenuation of FGF23 bioactivity by cFGF23 peptide is a promising therapeutic strategy to protect the kidney and heart from high FGF23 activity.NEW & NOTEWORTHY There is a strong correlation between cardiovascular morbidity and high circulating fibroblast growth factor 23 (FGF23) levels, but causality was never proven. We used a murine chronic kidney disease (CKD) model to show that intact FGF23 (iFGF23) is pathogenic and contributes to both CKD progression and cardiomyopathy. Blockade of FGF23 signaling with a natural proteolytic product of iFGF23, C-terminal FGF23, alleviated kidney and cardiac histology, and function in three separate murine models of high endogenous FGF23.


Subject(s)
Cardiomyopathies , Renal Insufficiency, Chronic , Animals , Mice , Fibroblast Growth Factor-23 , Disease Models, Animal , Renal Insufficiency, Chronic/metabolism , Fibroblast Growth Factors/pharmacology , Fibroblast Growth Factors/metabolism , Biomarkers , Phosphates , Cardiomyopathies/drug therapy , Cardiomyopathies/complications
4.
Eur J Med Res ; 29(1): 65, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245791

ABSTRACT

Asthma represents a significant global challenge that affects individuals across all age groups and imposes substantial social and economic burden. Due to heterogeneity of the disease, not all patients obtain benefit with current treatments. The objective of this study was to explore the impact of MD2 on the progression of asthma using L6H21, a novel MD2 inhibitor, to identify potential targets and drug candidates for asthma treatment. To establish an asthma-related murine model and evaluate the effects of L6H21, ovalbumin (OVA) was used to sensitize and challenge mice. Pathological changes were examined with various staining techniques, such as H&E staining, glycogen staining, and Masson staining. Inflammatory cell infiltration and excessive cytokine secretion were evaluated by analyzing BALF cell count, RT-PCR, and ELISA. The TLR4/MD2 complex formation, as well as the activation of the MAPK and NF-кB pathways, was examined using western blot and co-IP. Treatment with L6H21 demonstrated alleviation of increased airway resistance, lung tissue injury, inflammatory cell infiltration and excessive cytokine secretion triggered by OVA. In addition, it also ameliorated mucus production and collagen deposition. In the L6H21 treatment group, inhibition of MAPK and NF-кB activation was observed, along with the disruption of TLR4/MD2 complex formation, in contrast to the model group. Thus, L6H21 effectively reduced the formation of the MD2 and TLR4 complex induced by OVA in a dose-dependent manner. This reduction resulted in the attenuation of MAPKs/NF-κB activation, enhanced suppression of inflammatory factor secretion, reduced excessive recruitment of inflammatory cells, and ultimately mitigated airway damage. MD2 emerges as a crucial target for asthma treatment, and L6H21, as an MD2 inhibitor, shows promise as a potential drug candidate for the treatment of asthma.


Subject(s)
Asthma , Chalcone , Chalcones , Humans , Mice , Animals , Chalcone/therapeutic use , Ovalbumin/therapeutic use , NF-kappa B/genetics , NF-kappa B/metabolism , Chalcones/pharmacology , Chalcones/therapeutic use , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/therapeutic use , Asthma/chemically induced , Asthma/drug therapy , Asthma/pathology , Lung/pathology , Cytokines/metabolism , Disease Models, Animal , Mice, Inbred BALB C
5.
Food Chem Toxicol ; 181: 114065, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769895

ABSTRACT

Artemether-lumefantrine is an artemisinin-based combination therapy for the treatment of malaria, which are primarily metabolized by cytochrome P450 3A4. Therapeutic difference caused by gene polymorphisms of CYP3A4 may lead to uncertain adverse side effects or treatment failure. The aim of this study was to evaluate the effect of CYP3A4 gene polymorphism on artemether-lumefantrine metabolism in vitro. Enzyme kinetics assay was performed using recombinant human CYP3A4 cell microsomes. The analytes, dihydroartimisinin and desbutyl-lumefantrine, were detected by ultra-performance liquid chromatography tandem mass spectrometry. The results demonstrated that compared to CYP3A4.1, the intrinsic clearance of CYP3A4.4, 5, 9, 16, 18, 23, 24, 28, 31-34 significantly reduced for artemether (58.5%-93.3%), and CYP3A4.17 almost loss catalytic activity. Simultaneously, CYP3A4.5, 14, 17, 24 for lumefantrine were decreased by 56.1%-99.6%, and CYP3A4.11, 15, 18, 19, 23, 28, 29, 31-34 for lumefantrine was increased by 51.7%-296%. The variation in clearance rate indicated by molecular docking could be attributed to the disparity in the binding affinity of artemether and lumefantrine with CYP3A4. The data presented here have enriched our understanding of the effect of CYP3A4 gene polymorphism on artemether-lumefantrine metabolizing. These findings serve as a valuable reference and provide insights for guiding the treatment strategy involving artemether-lumefantrine.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Antimalarials/adverse effects , Artemether/therapeutic use , Cytochrome P-450 CYP3A/genetics , Molecular Docking Simulation , Artemether, Lumefantrine Drug Combination/therapeutic use , Lumefantrine/therapeutic use , Fluorenes/adverse effects , Malaria, Falciparum/chemically induced , Malaria, Falciparum/drug therapy
6.
Nature ; 618(7966): 862-870, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37286607

ABSTRACT

α/ßKlotho coreceptors simultaneously engage fibroblast growth factor (FGF) hormones (FGF19, FGF21 and FGF23)1,2 and their cognate cell-surface FGF receptors (FGFR1-4) thereby stabilizing the endocrine FGF-FGFR complex3-6. However, these hormones still require heparan sulfate (HS) proteoglycan as an additional coreceptor to induce FGFR dimerization/activation and hence elicit their essential metabolic activities6. To reveal the molecular mechanism underpinning the coreceptor role of HS, we solved cryo-electron microscopy structures of three distinct 1:2:1:1 FGF23-FGFR-αKlotho-HS quaternary complexes featuring the 'c' splice isoforms of FGFR1 (FGFR1c), FGFR3 (FGFR3c) or FGFR4 as the receptor component. These structures, supported by cell-based receptor complementation and heterodimerization experiments, reveal that a single HS chain enables FGF23 and its primary FGFR within a 1:1:1 FGF23-FGFR-αKlotho ternary complex to jointly recruit a lone secondary FGFR molecule leading to asymmetric receptor dimerization and activation. However, αKlotho does not directly participate in recruiting the secondary receptor/dimerization. We also show that the asymmetric mode of receptor dimerization is applicable to paracrine FGFs that signal solely in an HS-dependent fashion. Our structural and biochemical data overturn the current symmetric FGFR dimerization paradigm and provide blueprints for rational discovery of modulators of FGF signalling2 as therapeutics for human metabolic diseases and cancer.


Subject(s)
Fibroblast Growth Factor-23 , Heparan Sulfate Proteoglycans , Hormones , Receptors, Fibroblast Growth Factor , Signal Transduction , Humans , Cryoelectron Microscopy , Fibroblast Growth Factor-23/chemistry , Fibroblast Growth Factor-23/metabolism , Fibroblast Growth Factor-23/ultrastructure , Heparan Sulfate Proteoglycans/chemistry , Heparan Sulfate Proteoglycans/metabolism , Hormones/chemistry , Hormones/metabolism , Klotho Proteins/chemistry , Klotho Proteins/metabolism , Klotho Proteins/ultrastructure , Protein Multimerization , Receptors, Fibroblast Growth Factor/chemistry , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Fibroblast Growth Factor/ultrastructure , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure
7.
J Med Chem ; 66(10): 6938-6958, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37130331

ABSTRACT

Myeloid differentiation primary response protein 88 (MyD88) is crucial to immune cascades mediated by Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). MyD88 dysregulation has been linked to a wide variety of inflammatory diseases, making it a promising new target for anti-inflammatory and cancer therapy development. In this study, 46 compounds were designed and synthesized inspired by virtual screen hit. The anti-inflammatory activity of designed compounds was evaluated biologically, and c17 was discovered to have a high binding affinity with MyD88. It inhibited the interaction of TLR4 and MyD88 and suppressed the NF-κB pathway. In addition, c17 treatment led to the accumulation in the lungs of rats and attenuated LPS-induced ALI mice model. Furthermore, c17 showed negligible toxicity in vivo. Together, these findings suggest that c17 may serve as a potential therapeutical method for the treatment of ALI and as a lead structure for the continued development of MyD88 inhibitors.


Subject(s)
Acute Lung Injury , Signal Transduction , Mice , Rats , Animals , Myeloid Differentiation Factor 88/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , NF-kappa B/metabolism , Anti-Inflammatory Agents/adverse effects , Lipopolysaccharides/pharmacology
8.
Int Immunopharmacol ; 120: 110292, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37182452

ABSTRACT

BACKGROUND: NLR family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis plays a key role in various acute and chronic inflammatory diseases. Targeted inhibition of NLRP3-mediated pyroptosis may be a potential therapeutic strategy for various inflammatory diseases. Ergolide (ERG) is a sesquiterpene lactone natural product derived from the traditional Chinese medicinal herb, Inula britannica. ERG has been shown to have anti-inflammatory and anti-cancer activities, but the target is remains unknown. HYPOTHESIS/PURPOSE: This study performed an in-depth investigation of the anti-inflammatory mechanism of ERG in NLRP3-mediated pyroptosis and NLPR3 inflammasome related sepsis and acute lung injury model. METHODS: ELISA and Western blot were used to determine the IL-1ß and P20 levels. Co-immunoprecipitation assays were used to detect the interaction between proteins. Drug affinity response target stability (DARTS) assays were used to explore the potential target of ERG. C57BL/6J mice were intraperitoneally injected with E. coli DH5α (2 × 109 CFU/mouse) to establish a sepsis model. Acute lung injury was induced by intratracheal administrationof lipopolysaccharide in wild-type mice and NLRP3 knockout mice with or without ERG treatment. RESULTS: We showed that ERG is an efficient inhibitor of NLRP3-mediated pyroptosis in the first and second signals of NLRP3 inflammasome activation. Furthermore, we demonstrated that ERG irreversibly bound to the NACHT domain of NLRP3 to prevent the assembly and activation of the NLRP3 inflammasome. ERG remarkably improved the survival rate of wild-type septic mice. In lipopolysaccharide-induced acute lung injury model, ERG alleviated acute lung injury of wild-type mice but not NLRP3 knockout mice. CONCLUSION: Our results revealed that the anti-pyroptosis effect of ERG are dependent on NLRP3 and NLRP3 NACHT domain is ERG's direct target. Therefore, ERG can serve as a precursor drug for the development of novel NLRP3 inhibitors to treat NLRP3 inflammasome mediated inflammatory diseases.


Subject(s)
Acute Lung Injury , Sepsis , Sesquiterpenes , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipopolysaccharides , Escherichia coli/metabolism , Mice, Inbred C57BL , Lactones , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Sepsis/drug therapy , Mice, Knockout
9.
Front Pharmacol ; 14: 1098463, 2023.
Article in English | MEDLINE | ID: mdl-36843936

ABSTRACT

Liver fibrosis is characterised by the activation of hepatic stellate cells (HSCs) and matrix deposition. Accumulating evidence has revealed that the oncogenic protein tyrosine phosphatase Src homology 2 domain-containing phosphatase 2 (SHP2) acts as a therapeutic target of fibrosis. Although several SHP2 inhibitors have reached early clinical trials, there are currently no FDA-approved drugs that target SHP2. In this study, we aimed to identify novel SHP2 inhibitors from an in-house natural product library to treat liver fibrosis. Out of the screened 800 compounds, a furanogermacrane sesquiterpene, linderalactone (LIN), significantly inhibited SHP2 dephosphorylation activity in vitro. Cross-validated enzymatic assays, bio-layer interferometry (BLI) assays, and site-directed mutagenesis were used to confirm that LIN directly binds to the catalytic PTP domain of SHP2. In vivo administration of LIN significantly ameliorated carbon tetrachloride (CCl4)-induced HSC activation and liver fibrosis by inhibiting the TGFß/Smad3 pathway. Thus, LIN or its derivatives could be considered potential therapeutic agents against SHP2-related diseases, such as liver fibrosis or NASH.

10.
Eur J Med Chem ; 249: 115144, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36708679

ABSTRACT

Acute lung injury (ALI) and sepsis, characterized by systemic inflammatory response syndrome, remain the major causes of death in severe patients. Inhibiting the release of proinflammatory cytokines is considered to be a promising method for the treatment of inflammation-related diseases. In this study, a total of 28 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivatives were designed and synthesized and their anti-inflammatory activities in J774A.1 were evaluated. Among them, derivative 13a was found to significantly inhibit lipopolysaccharide (LPS)-induced expression of the proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) on J774A.1, THP-1 and LX-2 cells, and inhibited the activation of the NF-κB pathway. Furthermore, administration of 13ain vivo significantly improved the symptoms in LPS-induced ALI mice, including alleviation of pathological changes in the lung tissue, reduction of pulmonary edema, and inhibition of macrophage infiltration. Moreover, the administration of 13ain vivo significantly promoted survival in LPS-induced sepsis mice. 13a demonstrated favorable pharmacokinetic properties with T1/2 value of 11.8 h and F value of 36.3%. Therefore, this study has identified a novel 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivative, 13a, which is an effective anti-inflammatory agent. The findings have laid a foundation for the further development of agents to treat ALI and sepsis.


Subject(s)
Acute Lung Injury , Sepsis , Mice , Animals , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Lung/metabolism , Anti-Inflammatory Agents/adverse effects , Cytokines/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Sepsis/chemically induced , Sepsis/drug therapy , Sepsis/metabolism
11.
Front Pharmacol ; 12: 775117, 2021.
Article in English | MEDLINE | ID: mdl-34912226

ABSTRACT

Myeloid differentiation factor 88 (MyD88) is a hub protein in the Toll-like receptor signaling pathway, which acts as a master switch for numerous inflammatory diseases, including acute lung injury (ALI). Although this protein is considered as a crucial therapeutic target, there are currently no clinically approved MyD88-targeting drugs. Based on previous literature, here we report the discovery via computer-aided drug design (CADD) of a small molecule, M20, which functions as a novel MyD88 inhibitor to efficiently relieve lipopolysaccharide-induced inflammation both in vitro and in vivo. Computational chemistry, surface plasmon resonance detection (SPR) and biological experiments demonstrated that M20 forms an important interaction with the MyD88-Toll/interleukin-1 receptor domain and thereby inhibits the protein dimerization. Taken together, this study found a MyD88 inhibitor, M20, with a novel skeleton, which provides a crucial understanding in the development and modification of MyD88 inhibitors. Meanwhile, the favorable bioactivity of the hit compound is also conducive to the treatment of acute lung injury or other more inflammatory diseases.

12.
Biomed Pharmacother ; 141: 111874, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34229251

ABSTRACT

Bicyclol has been approved as an anti-inflammatory, hepatoprotective drug in China to treat various forms of hepatitis. However, the role of bicyclol in non-alcoholic fatty liver disease (NAFLD) is unknown. In this study, NAFLD model was established by feeding mice with high fat diet (HFD) for 16 weeks, and bicyclol (25 and 50 mg/kg) were orally administered for the last 4 weeks. Although bicyclol treatment did not change the body weight of mice, bicyclol administration significantly improved HFD-induced dyslipidemia, NAFLD activity score, hepatic apoptosis, systemic and hepatic inflammation, and liver fibrosis in the mice. Moreover, bicyclol treatment significantly inhibited HFD-induced activation of MAPKs and NF-κB signaling pathways that may mediate the inflammatory responses. Further in vitro studies showed that bicyclol pretreatment markedly ameliorated PA-induced inflammatory responses in human hepatocyte HL-7702 cells and mouse peritoneal macrophages through inhibiting MAPKs and NF-κB signaling pathways. These data indicated that bicyclol may have the potency to treat NAFLD by reducing inflammation.


Subject(s)
Biphenyl Compounds/therapeutic use , Diet, High-Fat/adverse effects , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Non-alcoholic Fatty Liver Disease/drug therapy , Protein Kinase Inhibitors/therapeutic use , Animals , Apoptosis/drug effects , Apoptosis/physiology , Biphenyl Compounds/pharmacology , Cells, Cultured , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase Kinases/metabolism , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Protein Kinase Inhibitors/pharmacology
13.
Toxicol Appl Pharmacol ; 428: 115648, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34280409

ABSTRACT

Acute lung injury (ALI) is a diffuse lung dysfunction disease characterized by high prevalence and high mortality. Thus far, no effective pharmacological treatment has been made for ALI in clinics. Inflammation is critical to the development of ALI. Therefore, anti-inflammation may be a potential therapy strategy for ALI. Indazole-containing derivatives, representing one of the most important heterocycles in drug molecules, are endowed with a broad range of biological properties, such as anti-cancer and anti-inflammation. In the current study, we investigated the biological effects of Cyy-272, a newly synthesized indazole compound, on LPS-induced ALI both in vivo and in vitro. Results show that Cyy-272 can inhibit the release of inflammatory cytokines in LPS-stimulated macrophage and alleviate LPS induced ALI. Further experiment revealed that Cyy-272 exhibit anti-inflammation activity by inhibiting JNK phosphorylation. Overall, our studies show that an indazole derivative, Cyy-272, is effective in suppressing LPS-induced JNK activation and inflammatory signaling.


Subject(s)
Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Indazoles/therapeutic use , Lipopolysaccharides/toxicity , MAP Kinase Kinase 4/antagonists & inhibitors , Acute Lung Injury/metabolism , Animals , Dose-Response Relationship, Drug , Indazoles/chemistry , Indazoles/pharmacology , MAP Kinase Kinase 4/chemistry , MAP Kinase Kinase 4/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Phosphorylation/drug effects , Phosphorylation/physiology , Protein Structure, Tertiary , RAW 264.7 Cells
14.
Haematologica ; 106(2): 391-403, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32193252

ABSTRACT

Hypoferremia results as an acute phase response to infection and inflammation aiming to reduce iron availability to pathogens. Activation of toll-like receptors (TLRs), the key sensors of the innate immune system, induces hypoferremia mainly through the rise of the iron hormone hepcidin. Conversely, stimulation of erythropoiesis suppresses hepcidin expression via induction of the erythropoietin-responsive hormone erythroferrone. Iron deficiency stimulates transcription of the osteocyte-secreted protein FGF23. Here we hypothesized that induction of FGF23 in response to TLR4 activation is a potent contributor to hypoferremia and, thus, impairment of its activity may alleviate hypoferremia induced by lipopolysaccharide (LPS), a TLR 4 agonist. We used the C-terminal tail of FGF23 to impair endogenous full-length FGF23 signaling in wild-type mice, and investigated its impact on hypoferremia. Our data show that FGF23 is induced as early as pro-inflammatory cytokines in response to LPS, followed by upregulation of hepcidin and downregulation of erythropoietin (Epo) expression in addition to decreased serum iron and transferrin saturation. Further, LPS-induced hepatic and circulating hepcidin were significantly reduced by FGF23 signaling disruption. Accordingly, iron sequestration in liver and spleen caused by TLR4 activation was completely abrogated by FGF23 signaling inhibition, resulting in alleviation of serum iron and transferrin saturation deficit. Taken together, our studies highlight for the first time that inhibition of FGF23 signaling alleviates LPS-induced acute hypoferremia.


Subject(s)
Hepcidins , Iron , Animals , C-Peptide , Erythropoiesis , Fibroblast Growth Factor-23 , Hepcidins/genetics , Inflammation/drug therapy , Mice
15.
Acta Pharmacol Sin ; 41(8): 1093-1101, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32341464

ABSTRACT

Mechanisms of cardiomyopathy caused by obesity/hyperlipidemia are complicated. Obesity is usually associated with chronic low-grade inflammation and may lead to the onset and progression of myocardial fibrosis and remodeling. TLR4/MyD88 signaling pathway, as a key regulator of inflammation, plays an important role in the pathogenesis of obesity-induced cardiomyopathy. We previously demonstrated that LM9, a novel MyD88 inhibitor, attenuated inflammatory responses and fibrosis in obesity-induced cardiomyopathy by inhibiting the formation of TLR4/MyD88 complex. In this study, we investigated the protective effects of LM9 on obesity-induced cardiomyopathy in vitro and in vivo. We showed that LM9 (5, 10 µM) significantly attenuates palmitic acid (PA)-induced inflammation in mouse peritoneal macrophages, evidenced by decreased expression of proinflammatory genes including TNF-α, IL-6, IL-1ß, and ICAM-1. In cardiac-derived H9C2 cells, LM9 treatment suppressed PA-induced inflammation, lipid accumulation, and fibrotic responses. In addition, LM9 treatment also inhibited PA-activated TLR4/MyD88/NF-κB signaling pathway. We further revealed in HEK293 cells that LM9 treatment blocked the TLR4/MyD88 binding and MyD88 homodimer formation. In HFD-fed mice, administration of LM9 (5, 10 mg/kg, ig, every other days for 8 weeks) dose-dependently alleviated inflammation and fibrosis in heart tissues and decreased serum lipid concentration. In conclusion, this study demonstrates that MyD88 inhibitor LM9 exerts protective effects against obesity-induced cardiomyopathy, suggesting LM9 to be a promising therapeutic candidate drug for the obesity-related cardiac complications.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Cardiomyopathies/drug therapy , Fibrosis/drug therapy , Inflammation/drug therapy , Myeloid Differentiation Factor 88/antagonists & inhibitors , Piperazines/therapeutic use , Thiazoles/therapeutic use , Animals , Cardiomyopathies/epidemiology , Cardiomyopathies/pathology , Diet, High-Fat , Dose-Response Relationship, Drug , Fibrosis/pathology , HEK293 Cells , Humans , Macrophages, Peritoneal/drug effects , Male , Mice, Inbred C57BL , Myocardium/pathology , NF-kappa B/metabolism , Obesity/complications , Rats , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
16.
Front Pharmacol ; 10: 1533, 2019.
Article in English | MEDLINE | ID: mdl-31998131

ABSTRACT

In the past decades, epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) had been proved as an effective treatment strategy for the patients with EGFR-mutated non-small-cell lung cancer (NSCLC). However, the tolerance for the EGFR-TKI always occurred after continuous administration for a period of time and limiting the application of these drugs. Activation of FGFR1 signaling pathway was one of the important escape mechanisms for EGFR-TKI resistant in NSCLC. Here, a novel dual inhibitor of EGFRL858R/T790M and FGFR1, compound15c, was found and can efficiently overcame the EGFR-TKI resistance via its simultaneous inhibition of their kinase activities. Comparison with EGFRL858R/T790M and FGFR1 inhibitor treatment alone or combined revealed that the inhibition of EGFRL858R/T790M and FGFR1 activity by 15c was responsible for surmounting the intrinsic EGFR-TKI resistance in EGFRL858R/T790M-mutated H1975 cells and the acquired resistance in Afatinib-tolerant PC9 cells (AFA-PC9). Flow Cytometry and Caspase3 activity analysis assay showed that 15c induced significant the early apoptosis of H1975 cells. Xenograft tumor formation in BALB/c mice induced by a H1975 cells was suppressed by 15c treatment, with no changes in animal body weight. Generally, 15c may act as a new-generation EGFR-TKI for the therapy of NSCLC patients suffering a resistance to current TKI.

17.
Nature ; 553(7689): 461-466, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29342138

ABSTRACT

The ageing suppressor α-klotho binds to the fibroblast growth factor receptor (FGFR). This commits FGFR to respond to FGF23, a key hormone in the regulation of mineral ion and vitamin D homeostasis. The role and mechanism of this co-receptor are unknown. Here we present the atomic structure of a 1:1:1 ternary complex that consists of the shed extracellular domain of α-klotho, the FGFR1c ligand-binding domain, and FGF23. In this complex, α-klotho simultaneously tethers FGFR1c by its D3 domain and FGF23 by its C-terminal tail, thus implementing FGF23-FGFR1c proximity and conferring stability. Dimerization of the stabilized ternary complexes and receptor activation remain dependent on the binding of heparan sulfate, a mandatory cofactor of paracrine FGF signalling. The structure of α-klotho is incompatible with its purported glycosidase activity. Thus, shed α-klotho functions as an on-demand non-enzymatic scaffold protein that promotes FGF23 signalling.


Subject(s)
Fibroblast Growth Factors/chemistry , Fibroblast Growth Factors/metabolism , Glucuronidase/chemistry , Glucuronidase/metabolism , Paracrine Communication , Receptor, Fibroblast Growth Factor, Type 1/chemistry , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction , Animals , Binding Sites/genetics , Body Fluids/metabolism , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/genetics , Glucuronidase/genetics , Heparitin Sulfate/metabolism , Humans , Klotho Proteins , Ligands , Male , Mice , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , Protein Binding , Protein Domains , Protein Multimerization , Solubility
18.
Eur J Med Chem ; 143: 361-375, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29202400

ABSTRACT

Myeloid differentiation protein 2 (MD2) is an essential molecule which recognizes lipopolysaccharide (LPS), leading to initiation of inflammation through the activation of Toll-like receptor 4 (TLR4) signaling. Caffeic acid phenethyl ester (CAPE) from propolis of honeybee hives could interfere interactions between LPS and the TLR4/MD2 complex, and thereby has promising anti-inflammatory properties. In this study, we designed and synthesized 48 CAPE derivatives and evaluated their anti-inflammatory activities in mouse primary peritoneal macrophages (MPMs) activated by LPS. The most active compound, 10s, was found to bind with MD2 with high affinity, which prevented formation of the LPS/MD2/TLR4 complex. The binding mode of 10s revealed that the major interactions with MD2 were established via two key hydrogen bonds and hydrophobic interactions. Furthermore, 10s showed remarkable protective effects against LPS-caused ALI (acute lung injury) in vivo. Taken together, this work provides new lead structures and candidates as MD2 inhibitors for the development of anti-inflammatory drugs.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Caffeic Acids/pharmacology , Drug Discovery , Lymphocyte Antigen 96/antagonists & inhibitors , Phenylethyl Alcohol/analogs & derivatives , Acute Lung Injury/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Caffeic Acids/chemical synthesis , Caffeic Acids/chemistry , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Dose-Response Relationship, Drug , Humans , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Lymphocyte Antigen 96/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Molecular Structure , Phenylethyl Alcohol/chemical synthesis , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/pharmacology , Structure-Activity Relationship
19.
Eur J Med Chem ; 139: 726-740, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28858767

ABSTRACT

Myeloid differentiation 2 (MD2) is essential to the recognition of lipopolysaccharide (LPS) and the subsequent mediation of toll-like receptor 4 (TLR4)-dependent acute inflammatory disorders including sepsis and acute lung injury. Inhibitors targeting MD2 may provide an alternative means to subdue acute inflammatory diseases. In the present study, 39 bisaryl-1,4-dien-3-one compounds with 5-carbon connection chains were designed and synthesized as MD2 inhibitors based on the analysis of the molecular docking of xanthohumol to MD2. The compound-MD2 interactions were measured by cell-free assays including bis-ANS displacement and SPR, and the active compounds were further tested for MD2 inhibition and anti-inflammatory activities in LPS-challenged macrophages. The most active compound, 1f, was shown to have remarkable protective effects against sepsis shock and pulmonary inflammation. Collectively, we present evidence that bisaryl-1,4-dien-3-one is a new lead structure for the development of anti-inflammatory agents targeting MD2.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Discovery , Lymphocyte Antigen 96/antagonists & inhibitors , Sepsis/drug therapy , Acute Lung Injury/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Dose-Response Relationship, Drug , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Lymphocyte Antigen 96/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Molecular Structure , Sepsis/metabolism , Structure-Activity Relationship
20.
Toxicol Appl Pharmacol ; 317: 1-11, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28063877

ABSTRACT

Retinal ischemia-reperfusion (I/R) injury is a common pathological process in many eye disorders. Oxidative stress and inflammation play a role in retinal I/R injury. Recent studies show that toll-like receptor 4 (TLR4) is involved in initiating sterile inflammatory response in retinal I/R. However, the molecular mechanism by which TLR4 is activated is not known. In this study, we show that retinal I/R injury involves a co-receptor of TLR4, myeloid differentiation 2 (MD2). Inhibition of MD2 prevented cell death and preserved retinal function following retinal I/R injury. We confirmed these findings using MD2 knockout mice. Furthermore, we utilized human retinal pigment epithelial cells (ARPE-19 cells) to show that oxidative stress-induced cell death as well as inflammatory response are mediated through MD2. Inhibition of MD2 through a chemical inhibitor or knockdown prevented oxidative stress-induced cell death and expression of inflammatory cytokines. Oxidative stress was found to activate TLR4 in a MD2-dependent manner via increasing the expression of high mobility group box 1. In summary, our study shows that oxidative stress in retinal I/R injury can activate TLR4 signaling via MD2, resulting in induction of inflammatory genes and retinal damage. MD2 may represent an attractive therapeutic target for retinal I/R injury.


Subject(s)
Lymphocyte Antigen 96/deficiency , Oxidative Stress/physiology , Reperfusion Injury/metabolism , Retinal Diseases/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Chalcones/pharmacology , Chalcones/therapeutic use , Humans , Lymphocyte Antigen 96/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress/drug effects , Random Allocation , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Retinal Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...