Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Clin Invest ; 133(9)2023 05 01.
Article in English | MEDLINE | ID: mdl-36917193

ABSTRACT

Chronic pain can cause both hyperalgesia and anxiety symptoms. However, how the two components are encoded in the brain remains unclear. The prelimbic cortex (PrL), a critical brain region for both nociceptive and emotional modulations, serves as an ideal medium for comparing how the two components are encoded. We report that PrL neurons projecting to the basolateral amygdala (PrLBLA) and those projecting to the ventrolateral periaqueductal gray (PrLl/vlPAG) were segregated and displayed elevated and reduced neuronal activity, respectively, during pain chronicity. Consistently, optogenetic suppression of the PrL-BLA circuit reversed anxiety-like behaviors, whereas activation of the PrL-l/vlPAG circuit attenuated hyperalgesia in mice with chronic pain. Moreover, mechanistic studies indicated that elevated TNF-α/TNFR1 signaling in the PrL caused increased insertion of GluA1 receptors into PrLBLA neurons and contributed to anxiety-like behaviors in mice with chronic pain. Together, these results provide insights into the circuit and molecular mechanisms in the PrL for controlling pain-related hyperalgesia and anxiety-like behaviors.


Subject(s)
Basolateral Nuclear Complex , Chronic Pain , Mice , Animals , Chronic Pain/genetics , Hyperalgesia , Anxiety/genetics , Cerebral Cortex
2.
Nat Commun ; 14(1): 729, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759610

ABSTRACT

Alterations in energy metabolism are associated with depression. However, the role of glycolysis in the pathogenesis of depression and the underlying molecular mechanisms remain unexplored. Through an unbiased proteomic screen coupled with biochemical verifications, we show that the levels of glycolysis and lactate dehydrogenase A (LDHA), a glycolytic enzyme that catalyzes L-lactate production, are reduced in the dorsomedial prefrontal cortex (dmPFC) of stress-susceptible mice in chronic social defeat stress (CSDS) model. Conditional knockout of LDHA from the brain promotes depressive-like behaviors in both male and female mice, accompanied with reduced L-lactate levels and decreased neuronal excitability in the dmPFC. Moreover, these phenotypes could be duplicated by knockdown of LDHA in the dmPFC or specifically in astrocytes. In contrast, overexpression of LDHA reverses these phenotypic changes in CSDS-susceptible mice. Mechanistic studies demonstrate that L-lactate promotes neuronal excitability through monocarboxylic acid transporter 2 (MCT2) and by inhibiting large-conductance Ca2+-activated potassium (BK) channel. Together, these results reveal a role of LDHA in maintaining neuronal excitability to prevent depressive-like behaviors.


Subject(s)
Astrocytes , Lactic Acid , Mice , Male , Female , Animals , Lactate Dehydrogenase 5/metabolism , Astrocytes/metabolism , L-Lactate Dehydrogenase/metabolism , Proteomics , Carrier Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...