Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
ACS Nano ; 18(28): 18230-18245, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38950337

ABSTRACT

Therapy-induced modulation of the tumor microenvironment (TME) to overcome the immunosuppressive TME is considered to be an opportunity for cancer treatment. However, monitoring of TME modulation during the therapeutic process to accurately determine immune responses and adjust treatment plans in a timely manner remains to be challenging. Herein, we report a carrier-free nanotheranostic system (CANPs) assembled by two boron dipyrromethene (BODIPY) dyes, a sonophotosensitizer C-BDP, and a nitric oxide (NO) probe amino-BODIPY (A-BDP). CANPs can exert combined sonophototherapeutic effects of C-BDP under ultrasound and light irradiation and simultaneously induce inflammatory TME, as well as emit bright fluorescence via A-BDP by monitoring tumor-associated macrophages (TAMs) repolarization through the released NO in vitro and in vivo. Of note, transforming growth factor-ß (TGF-ß) could be the key cytokine involved in the sonophototherapy-induced TME reprogramming. By virtue of high physiological stability, good biocompatibility, and effective tumor targetability, CANPs could be a potential nanotheranostic system for the simultaneous induction and detection of TME reprogramming triggered by sonophototherapy.


Subject(s)
Theranostic Nanomedicine , Tumor Microenvironment , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Animals , Mice , Porphobilinogen/analogs & derivatives , Porphobilinogen/chemistry , Porphobilinogen/pharmacology , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Boron Compounds/chemistry , Boron Compounds/pharmacology , Nitric Oxide/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Female , Nanoparticles/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , RAW 264.7 Cells
2.
Infect Drug Resist ; 17: 2751-2758, 2024.
Article in English | MEDLINE | ID: mdl-38974312

ABSTRACT

Background: Chronic hepatitis B (CHB) presents a global health challenge due to its potential to cause severe liver conditions such as hepatocellular carcinoma (HCC) and cirrhosis. Prior research has established a correlation between CHB infection with low-level viremia (LLV) and liver disease progression, such as increased HCC incidence. This study aims to investigate whether LLV during treatment with nucleos(t)ide analogs (NAs) contributes to the accelerated progression of liver fibrosis (LF). Methods: This retrospective cohort study at Jinhua Central Hospital focused on CHB patients undergone NA monotherapy for over 96 weeks. Patients were categorized into maintained virological response (MVR) and LLV groups based on hepatitis B virus (HBV) DNA levels. The study assessed LF using various markers and methods, including chitinase 3-like 1 protein (CHI3L1), aspartate aminotransferase-to-platelet ratio index (APRI), fibrosis-4 (FIB-4) score, and transient elastography. Results: Analysis was conducted on 92 CHB patients, categorized into LLV (n=42) and MVR (n=50) groups, following the exclusion of 101 patients for various reasons. Significant findings included lower baseline HBV DNA in MVR (<20 IU/mL) compared to LLV (67.8 IU/mL, P<0.001) and different AST/ALT ratios (LLV: 1.1, MVR: 1.36, P=0.011). LF was assessed using CHI3L1, FIB-4, and APRI, with LLV showing a higher baseline CHI3L1 (LLV:83.3 ng/mL vs MVR: 54.5 ng/mL, P=0.016) and scores compared to MVR, indicative of fibrosis. CHI3L1 levels in LLV were higher at baseline and weeks 48, 72, and 96 than MVR, with significance at baseline (P=0.038) and week 48 (P=0.034). Liver stiffness measurement (LSM) showed a time-dependent decline in both groups but no significant intergroup differences. Conclusion: Non-invasive monitoring of CHB patients who have received treatment indicates that LLV contributes to the progression of LF, necessitating proactive adjustment of antiviral treatment strategies.

3.
Chemistry ; : e202401436, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869004

ABSTRACT

An efficient and rapid protocol for the oxidative halogenation of tryptamines with 10% aqueous NaClO has been developed. This reaction is featured by its operational simplicity, metal-free conditions, no purification, and high yield. Notably, the resulting key intermediates are suitable for further functionalization with various nucleophiles, including amines, N-aromatic heterocycles, indoles and phenols. The overall transformation exhibits broad functional-group tolerance and is applicable to the late-stage functionalization of complex biorelevant molecules.

4.
DNA Cell Biol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853745

ABSTRACT

Patients with colorectal cancer (CRC) and diabetes share many risk factors. Despite a strong association between diabetes and CRC being widely studied and confirmed, further genetic research is needed. This study found higher AL049796.1 and TEA domain transcription factor 1 (TEAD1) levels (both mRNA and protein) in CRC tissues of diabetic patients compared with nondiabetics, but no significant difference in miR-200b-3p levels. A positive correlation between AL049796.1 and TEAD1 protein existed regardless of diabetes status, whereas miR-200b-3p was only negatively correlated with TEAD1 protein in nondiabetic CRC tissues. In vitro experiments have shown that high glucose (HG) treatment increased AL049796.1 in CRC cells, and AL049796.1 silencing reduced HG-induced proliferation, migration and invasion, as well as connective tissue growth factor, cysteine-rich angiogenic inducer 61, and epidermal growth factor receptor protein expression. Mechanistic investigations indicated that AL049796.1 could mitigate suppression of miR-200b-3p on TEAD1 posttranscriptionally by acting as a competitive binder. In vivo, subcutaneous CRC tumors in streptozotocin (STZ)-induced mice grew significantly faster; AL049796.1 silencing did not affect the growth of subcutaneous CRC tumors but significantly reduced that of STZ-induced mice. Our study suggests that AL049796.1 independently contributes to the risk of CRC in diabetic patients, highlighting its potential as both a therapeutic target and a novel biomarker for CRC among individuals with diabetes.

5.
Sci Rep ; 14(1): 11984, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796631

ABSTRACT

In prior investigations, a correlation was established between patient outcomes in locally advanced non-small cell lung cancer (LA-NSCLC) following thoracic irradiation and parameters, such as pre/post-treatment neutrophil-to-lymphocyte ratio (NLR) and NLR change (ΔNLR). However, these parameters could potentially be influenced by radiation-related variables, such as gross tumor volume (GTV). The primary aim of this study was to elucidate the factors impacting post-treatment NLR and ΔNLR and to further assess their prognostic relevance. In this retrospective study, a cohort of 188 LA-NSCLC patients who underwent thoracic radiation between 2012 and 2017 was assessed. The calculation of pre/post-treatment NLR involved the use of absolute neutrophil and lymphocyte counts. ΔNLR was defined as the difference between post- and pre-treatment NLR values. To assess the relationships between various variables and overall survival (OS), local progression-free survival (LPFS), and distant metastasis-free survival (DMFS), the Kaplan-Meier technique and Cox proportional hazards regression were employed. Additionally, Spearman's rank correlation analysis was carried out to investigate correlations between the variables. The analysis revealed that both post-treatment NLR (r = 0.315, P < 0.001) and ΔNLR (r = 0.156, P = 0.032) were associated with GTV. However, OS, LPFS, and DMFS were not independently correlated with pre/post-treatment NLR. ΔNLR, on the other hand, exhibited independent associations with OS and DMFS (HR = 1.054, P = 0.020, and P = 0.046, respectively). Elevated ΔNLR values were linked to poorer OS (P = 0.023) and DMFS (P = 0.018) in the Kaplan-Meier analysis. Furthermore, when stratifying by GTV, a higher ΔNLR remained to be associated with worse OS and DMFS (P = 0.047 and P = 0.035, respectively) in the GTV ≤ 67.41 cm3 group, and in the GTV > 67.41 cm3 group (P = 0.028 and P = 0.042, respectively), highlighting ΔNLR as the sole independent predictive factor for survival and metastasis, irrespective of GTV.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Lymphocytes , Neutrophils , Humans , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/blood , Female , Male , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Lung Neoplasms/blood , Lymphocytes/pathology , Middle Aged , Aged , Prognosis , Retrospective Studies , Aged, 80 and over , Adult , Lymphocyte Count , Kaplan-Meier Estimate
6.
J Chromatogr A ; 1728: 465031, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38815477

ABSTRACT

In counter-current chromatography (CCC), linear scale-up is an ideal amplification strategy. However, when transferring from analytical to predictable preparative processes with high throughput, linear scale-up would be challenging due to limitations imposed by differences in instrument parameters, such as gravitational forces, tubing cross-section area, tubing length, column volume and flow rate. Some effective scale-up strategies have been studied for different instrument parameters, but so far, these scale-up works have only been tested on standard circular (SC) tubing. The previous research of our group found that rectangular horizontal (RH) tubing can double the separation efficiency compared with conventional SC tubing, and has industrial production potential. This paper used the separation of tilianin from Dracocephalum moldavica L. as an example to demonstrate how to scale up the optimized process from analytical SC tubing to preparative RH tubing. After systematic optimization of solvent systems, sample concentration and flow rate on the analytical CCC, the optimized parameters obtained were successfully transferred to the preparative CCC. The results showed that a crude sample of 2.07 g was successfully separated using a solvent system of n-hexane - ethyl acetate - ethanol - water (1:4:1:5, v/v/v/v) in reversed phase mode, and the three consecutive separations produced a total of 380 mg tilianin in 75 min with high purities of 98.3%, as analyzed by HPLC. The total throughput achieved from the analytical to semi-preparative scale was improved by 138 times (from 12 mg/h to 1.66 g/h), while the column volume was increased by only 46.5 times (from 15.5 mL to 720 mL). This is the successful application of CCC for the separation and purification of tilianin. Given that SC tubing is the traditional configuration for CCC columns, this study is a necessary step to prove the applicability of RH tubing columns for routine use and potential large-scale industrial applications.


Subject(s)
Countercurrent Distribution , Countercurrent Distribution/methods , Countercurrent Distribution/instrumentation , Glycosides/isolation & purification , Glycosides/analysis , Glycosides/chemistry , Pyrans/isolation & purification , Pyrans/analysis , Solvents/chemistry , Hexanes/chemistry , Lamiaceae/chemistry , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Ethanol/chemistry , Acetates/chemistry , Flavonoids
7.
Small ; : e2401301, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671565

ABSTRACT

Non-toxic Bi halides have great potential in the field of CO2 photoreduction, but strong charge localization limits their charge separation and transfer. In this study, a series of Cs3BiSbX9 (X = Cl, Br, I) perovskite quantum dots (PQDs) are synthesized by antisolvent recrystallization at room temperature, in which Cs3BiSbBr9 PQDs has high selectivity (94.51%) and yield (15.32 µmol g-1 h-1) of CO2 to CO. In situ DRIFTS and theoretical calculations suggest that the surface charge can be tailored by halogen modulation, allowing for the customization of intermediate species. The Bi─Br─Sb symmetric charge distribution induced by the halogen Br promotes the formation of b─HCOO and reduces the reaction energy barrier of the rate-limiting step, while the weak electronegativity of Cl and the high electronegativity of I leads to m─HCOO and ─COOH production, which are detrimental to CO generation. This work provides new insights into the design of halide alloy perovskites for CO2 photoreduction.

8.
J Photochem Photobiol B ; 253: 112886, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490055

ABSTRACT

Non-invasive therapies such as photodynamic therapy (PDT) and chemodynamic therapy (CDT) have received wide attention due to their low toxicity and side effects, but their efficacy is limited by the tumor microenvironment (TME), and monotherapy cannot achieve satisfactory efficacy. In this work, a multifunctional nanoparticle co-assembled from oleanolic acid (OA), chlorin e6 (Ce6) and hemin was developed. The as-constructed nanoparticle named OCH with diameters of around 130 nm possessed good biostability, pH/GSH dual-responsive drug release properties, and remarkable cellular internalization and tumor accumulation capabilities. OCH exhibited prominent catalytic activities to generate •OH, deplete GSH, and produce O2 to overcome the hypoxia TME, thus potentiating the photodynamic and chemodynamic effect. In addition, OCH can induce the occurrence of ferroptosis in both ferroptosis-sensitive and ferroptosis-resistant cancer cells. The multi-pronged effects of OCH including hypoxia alleviation, GSH depletion, ferroptosis induction, CDT and PDT effects jointly facilitate excellent anticancer effects in vitro and in vivo. Hence, this work will advance the development of safe and effective clinically transformable nanomedicine by employing clinically-applied agents to form drug combinations for efficient multi-pronged combination cancer therapy.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Combined Modality Therapy , Neoplasms/drug therapy , Drug Liberation , Hypoxia , Nanomedicine , Tumor Microenvironment , Cell Line, Tumor , Hydrogen Peroxide
10.
Sci Rep ; 14(1): 3099, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326539

ABSTRACT

Sparganii Rhizoma-Curcumae Rhizoma (SR-CR) is a classic drug pair for the treatment of castration-resistant prostate cancer (CRPC), but its mechanism has not been clarified. The study aims to elucidate the potential mechanism of SR-CR in the management of CRPC. The present study employed the TCMSP as well as the SwissTargetPrediction platform to retrieve the chemical composition and targets of SR-CR. The therapeutic targets of CRPC were identified through screening the GeneCards, Disgenet, and OMIM databases. Subsequently, the Venny online platform was utilized to identify the shared targets between the SR-CR and CRPC. The shared targets were enrichment analysis using the Bioconductor and Kyoto encyclopedia of genes and genomes (KEGG) databases. The active ingredients and core targets were verified through molecular docking and were validated using PC3 cells in the experimental validation phase. A total of 7 active ingredients and 1126 disease targets were screened from SR-CR, leading to a total of 59 shared targets. Gene Ontology (GO) analysis resulted in 1309 GO entries. KEGG pathways analysis yielded 121 pathways, primarily involving cancer-related signaling pathways. The results from molecular docking revealed stable binding interactions between the core ingredients and the core targets. In vitro cellular assays further demonstrated that SR-CR effectively suppressed the activation of the Prostate cancer signaling pathway in PC3 cells, leading to the inhibition of cell proliferation and promotion of apoptosis. The SR-CR exert therapeutic effects on CRPC by inhibiting cell proliferation and promoting apoptosis through the Prostate cancer signaling pathway.


Subject(s)
Drugs, Chinese Herbal , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Molecular Docking Simulation , Prostatic Neoplasms, Castration-Resistant/drug therapy , Apoptosis , Cell Proliferation , Databases, Factual , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
11.
Bioorg Chem ; 145: 107206, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367428

ABSTRACT

Photothermal therapy (PTT) has attracted extensive attention in cancer treatment. Heptamethine cyanine dyes with near-infrared (NIR) absorption performance have been investigated for PTT. However, they are often accompanied by poor photostability, suboptimal photothermal conversion and limited therapeutic efficacy. The photophysical properties of fluorescent organic salts can be tuned through counterion pairing. However, whether the counterion can influence the photostability and photothermal properties of heptamethine cyanine salts has not been clarified. In this work, we investigated the effects of eleven counter anions on the physical and photothermal properties of NIR-II heptamethine cyanine salts with the same heptamethine cyanine cation. The anions have great impacts on the physiochemical properties of dyes in solution including aggregation, photostability and photothermal conversion efficiency. The physical tuning enables the control over the cytotoxicity and phototoxicity of the dyes. The selected salts have been demonstrated to significantly suppress 4T1 breast tumor growth with low toxicity. The findings that the counterion has great effects on the photothermal properties of cationic NIR-II heptamethine cyanine dyes will provide a reference for the preparation of improved photothermal agents through counterion pairing with possible translation to humans.


Subject(s)
Carbocyanines , Photothermal Therapy , Salts , Humans , Salts/pharmacology , Coloring Agents/chemistry , Anions , Fluorescent Dyes/pharmacology , Fluorescent Dyes/chemistry
12.
Sci Rep ; 14(1): 4008, 2024 02 18.
Article in English | MEDLINE | ID: mdl-38369538

ABSTRACT

Triple-negative breast cancer (TNBC) is regarded as the deadliest subtype of breast cancer because of its high heterogeneity, aggressiveness, and limited treatment options. Toxoflavin has been reported to possess antitumor activity. In this study, a series of toxoflavin analogs were synthesized, among which D43 displayed a significant dose-dependent inhibitory effect on the proliferation of TNBC cells (MDA-MB-231 and HCC1806). Additionally, D43 inhibited DNA synthesis in TNBC cells, leading to cell cycle arrest at the G2/M phase. Furthermore, D43 consistently promoted intracellular ROS generation, induced DNA damage, and resulted in apoptosis in TNBC cells. These effects could be reversed by N-acetylcysteine. Moreover, D43 significantly inhibited the growth of breast cancer patient-derived organoids and xenografts with a favorable biosafety profile. In conclusion, D43 is a potent anticancer agent that elicits significant antiproliferation, oxidative stress, apoptosis, and DNA damage effects in TNBC cells, and D43 holds promise as a potential candidate for the treatment of TNBC.


Subject(s)
Pyrimidinones , Triazines , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Reactive Oxygen Species/metabolism , Cell Proliferation , Cell Line, Tumor , Apoptosis , DNA Damage
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123841, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38241933

ABSTRACT

Due to the very important role in physiological process, a simple and sensitive hemin detection method is necessarily required. Biomass-based carbonized polymer dots (CPDs) have been widely studied especially as fluorescence probe owing to the advantages of low toxicity and the variety of fluorescence color, yet there are still challenges in developing their multi-color emission property from the same raw materials. In this work, red, white and blue emissive CPDs derived from chlorophyll have been synthesized via hydrothermal method. Then white-emitted CPDs (white-CPDs) with the Commission International d'Eclairage (CIE) coordinates at (0.34, 0.32) were used to develop a fluorescence quenched sensing system for hemin determination. There is a good linear relationship between (F0-F)/F0 and concentration of hemin in the range of 0.1-0.95 µM with a detection limit of 0.043 µM, and the quenching mechanism was considered to be caused by inner filter effect (IFE). Moreover, it has been successfully used for hemin detection in serum and also for visual determination, which indicating great potential in applications of disease diagnoses and trace identification.


Subject(s)
Quantum Dots , Hemin , Polymers , Fluorescent Dyes , Spectrometry, Fluorescence/methods , Carbon
14.
J Hazard Mater ; 466: 133533, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38286046

ABSTRACT

Antibiotic resistance poses a global environmental challenge that jeopardizes human health and ecosystem stability. Antibiotic resistant bacteria (ARB) significantly promote the spreading and diffusion of antibiotic resistance. This study investigated the efficiency and mechanism of inactivating tetracycline-resistant Escherichia coli (TR E. coli) using Fe3O4 @MoS2 activated persulfate (Fe3O4 @MoS2/PS). Under optimized conditions (200 mg/L Fe3O4 @MoS2, 4 mM PS, 35 °C), TR E. coli (∼7.5 log CFU/mL) could be fully inactivated within 20 min. The primary reactive oxygen species (ROS) responsible for TR E. coli inactivation in the Fe3O4 @MoS2/PS system were hydroxyl radicals (•OH) and superoxide radicals (•O2-). Remarkably, the efflux pump protein was targeted and damaged by the generated ROS during the inactivation process, resulting in cell membrane rupture and efflux of cell content. Additionally, the horizontal transmission ability of residual antibiotic resistance genes (ARGs) harboring in the TR E. coli was also reduced after the inactivation treatment. This study offers an efficient approach for TR E. coli inactivation and substantial mitigation of antibiotic resistance dissemination risk.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Humans , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Molybdenum , Reactive Oxygen Species , Ecosystem , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Bacteria/genetics , Tetracycline , Drug Resistance, Microbial/genetics , Genes, Bacterial
15.
Cell Biochem Biophys ; 82(1): 303-314, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37831307

ABSTRACT

The effects of ultrasonic parameters and treatment conditions on the in vitro cellular experiments of sonodynamic therapy (SDT) have not been fully studied. Exploring the factors that affect the efficacy of SDT can provide a reference for screening effective sonosensitizers in vitro. The aim of this work is to investigate the factors that affected the SDT effects in cancer cells. Cancer cells in culture plates were exposed to ultrasound and sonosensitizers. The intracellular drug concentration was measured by using flow cytometry and the cell viability was determined by MTT assay. The SDT effects of cancer cells treated with different ultrasonic parameters under the same sonosensitizer concentration were different. The ultrasonic parameters, intracellular drug concentration, drug treatment time, cell amount, and cell status could affect the sonodynamic therapeutic effects. It is necessary to select appropriate ultrasound conditions and optimize the cellular status to make the results of the in vitro cellular experiments more reliable.


Subject(s)
Neoplasms , Ultrasonic Therapy , Humans , Ultrasonic Therapy/methods , Ultrasonics , Reactive Oxygen Species , Neoplasms/diagnostic imaging , Neoplasms/therapy , Cell Line, Tumor
16.
Microb Drug Resist ; 30(4): 153-163, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38150703

ABSTRACT

Tigecycline, one of the last-resort therapeutic options for complicated infections caused by multidrug-resistant pathogens, especially carbapenem-resistant Enterobacterales and Acinetobacter in recent years. The emergence of antibiotic-resistant bacteria and antibiotic-resistant genes has threatened the effectiveness of antibiotics and public health with the excessive use of antibiotics in clinics. However, the emergence and dissemination of high-level mobile tigecycline-resistance gene tet(X) is challenging for clinical effectiveness of antimicrobial agent. This study aimed to characterize an E. coli strain T43, isolated from an inpatient in a teaching hospital in China. The E. coli T43 was resistant to almost all antimicrobials except colistin and consisted of a 4,774,080 bp chromosome and three plasmids. Plasmids pT43-1 and pT43-2 contained tigecycline-resistance gene tet(X4). Plasmid pT43-1 had a size of 152,423 bp with 51.05% GC content and harbored 151 putative open reading frames. pT43-1 was the largest plasmid in strain T43 and carried numerous resistance genes, especially tigecycline resistance gene tet(X4) and carbapenemase resistance gene blaNDM-5. The tet(X) gene was associated with IS26. Co-occurrence of numerous resistance genes in a single plasmid possibly contributed to the dissemination of these genes under antibiotics stress. It might explain the presence of clinically crucial resistance genes tet(X) and blaNDM-5 in clinics. This study suggested the applicable use of antibiotics and continued surveillance of tet(X) and blaNDM-5 in clinics are imperative.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Humans , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Inpatients , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Plasmids/genetics , China
17.
Eur J Med Chem ; 264: 116035, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38101040

ABSTRACT

Sonodynamic therapy (SDT) is an emerging non-invasive and effective therapeutic modality for cancer treatment bearing benefit of deep tissue-penetration in comparison to photo-inspired therapy. However, exploring novel sonosensitizers with high sonosensitivity and desirable biosafety remains a significant challenge. Although boron dipyrromethene (BODIPY) dyes have been widely used in biomedical filed, no BODIPY-based sonosensitizers have been reported yet. Herein, we synthesized four BODIPY dyes (BDP1-BDP4) and investigated their potential applications in SDT. BDP4 exhibited superb sonosensitivity and high SDT efficiency against cancer cells and tumors in tumor-bearing mice. The types of the generated reactive oxygen species, cavitation effect, and cell apoptosis were investigated to figure out the sonodynamic therapeutic mechanisms of BDP4. This work for the first time demonstrates the potential of BODIPY dyes as novel sonosensitizers for SDT, which may pave an avenue for developing more efficient and safer sonosensitizers in future.


Subject(s)
Apoptosis , Neoplasms , Animals , Mice , Coloring Agents , Reactive Oxygen Species , Neoplasms/drug therapy , Cell Line, Tumor
18.
Open Med (Wars) ; 18(1): 20230823, 2023.
Article in English | MEDLINE | ID: mdl-38025543

ABSTRACT

Autoimmune hepatitis (AIH) is a chronic liver inflammatory disease with various immune system manifestations, showing a global trend of increased prevalence. AIH is diagnosed through histological abnormalities, clinical manifestations, and biochemical indicators. The biochemical markers involve interfacial hepatitis, transaminase abnormalities, positive autoantibodies, etc. Although AIH pathogenesis is unclear, gene mutations and immunological factors could be the leading factors. AIH usually presents as a chronic liver disease and sometimes as acute hepatitis, making it challenging to distinguish it from drug-related hepatitis due to similar clinical symptoms. Normalizing transaminases and serum IgG levels is essential in assessing the remission status of AIH treatment. Glucocorticoids and azathioprine are the first-line AIH treatment, with lifelong maintenance therapy in some patients. The quality of life and survival can be improved after appropriate treatment. However, certain limitations jeopardize the quality of treatment, including long treatment cycles, side effects, poor patient compliance, and inability to inhibit liver fibrosis and cirrhosis. Accurate AIH animal models will help us understand the pathophysiology of the disease while providing fresh perspectives for avoiding and treating AIH. This review will help us understand AIH better, from the cellular and molecular causes to the clinical features, and will provide insight into new therapy techniques with fewer side effects.

19.
Colloids Surf B Biointerfaces ; 232: 113606, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37898045

ABSTRACT

The efficacy and biosafety of sonodynamic therapy (SDT) are closely related to the properties of sonosensitizers. Inorganic sonosensitizers with high chemical stability and low dark toxicity are generally limited by slow metabolism and accumulation in vivo. Combined treatment strategies by inducing more redox imbalance are expected to improve the efficacy of sonodynamic antitumor therapy. Herein, we report the development of ultra-small iron-doped zinc oxide nanoparticles (FZO NPs) to achieve synergistic sono-chemodynamic therapy and low accumulation in vivo. The surface of FZO NPs with diameter of 5 nm was modified with 3-aminopropyltriethoxysilane and polyethylene glycol 600 to obtain FZO-ASP with good aqueous stability. FZO-ASP with iron doping could trigger Fenton reaction and induce ferroptosis in cancer cells. With the assistance of ultrasonic energy, FZO-ASP demonstrated enhanced inhibitory effects on proliferation of various cancer cells and murine breast tumor growth than undoped counterpart. In addition, FZO-ASP injected intravenously could be effectively excreted in vivo and showed no obvious cumulative toxicity to the treated mice. Hence, this type of ultra-small iron-doped zinc oxide nanoparticles could serve as a safe and efficient sonosensitizer agent for synergistic sono-chemodynamic cancer therapy.


Subject(s)
Ferroptosis , Nanoparticles , Neoplasms , Zinc Oxide , Animals , Mice , Zinc Oxide/pharmacology , Nanoparticles/chemistry , Zinc/pharmacology , Cell Line, Tumor , Iron/chemistry , Neoplasms/drug therapy
20.
Antibiotics (Basel) ; 12(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37760759

ABSTRACT

Klebsiella michiganensis is a recently emerging human pathogen causing nosocomial infections. This study aimed to characterize the complete genome sequence of a clinical Klebsiella michiganensis strain KMIB106 which exhibited extensive drug-resistance. The whole genome of the strain was sequenced using PacBio RS III systems and Illumina Nextseq 500. Annotation, transposable elements and resistance gene identification were analyzed by RAST, prokka and Plasmid Finder, respectively. According to the results, KMIB106 was resistant to multiple antimicrobials, including carbapenems, but it remained susceptible to aztreonam. The genome of KMIB106 consisted of a single chromosome and three predicted plasmids. Importantly, a novel KPC plasmid pB106-1 was found to carry the array of resistance genes in a highly different order in its variable regions, including mphA, msrE, mphE, ARR-3, addA16, sul1, dfrA27, tetD and fosA3. Plasmid pB106-2 is a typical IncFII plasmid with no resistant gene. Plasmid pB106-IMP consists of the IncN and IncX3 backbones, and two resistance genes, blaIMP-4 and blaSHV-12, were identified. Our study for the first time reported an extensively drug-resistant Klebsiella michiganensis strain recovered from a child with a respiratory infection in Southern China, which carries three mega plasmids, with pB106-1 firstly identified to carry an array of resistance genes in a distinctive order, and pB106-IMP identified as a novel IncN-IncX3 cointegrate plasmid harboring two resistance genes blaIMP-4 and blaSHV-12.

SELECTION OF CITATIONS
SEARCH DETAIL
...