Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
Environ Res ; 259: 119562, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971360

ABSTRACT

Elucidating the formation mechanism of plastisphere antibiotic resistance genes (ARGs) on different polymers is necessary to understand the ecological risks of plastisphere ARGs. Here, we explored the turnover and assembly mechanism of plastisphere ARGs on 8 different microplastic polymers (4 biodegradable (bMPs) and 4 non-biodegradable microplastics (nMPs)) by metagenomic sequencing. Our study revealed the presence of 479 ARGs with abundance ranging from 41.37 to 58.17 copies/16S rRNA gene in all plastispheres. These ARGs were predominantly multidrug resistance genes. The richness of plastisphere ARGs on different polymers had a significant correlation with the contribution of species turnover to plastisphere ARGs ß diversity. Furthermore, polymer type was the most critical factor affecting the composition of plastisphere ARGs. More opportunistic pathogens carrying diverse ARGs on BMPs (PBAT, PBS, and PHA) with higher horizontal gene transfer potential may further magnify the ecological risks and human health threats. For example, the opportunistic pathogens Riemerella anatipestifer, Vibrio campbellii, and Vibrio cholerae are closely related to human production and life, which were the important potential hosts of many plastisphere ARGs and mobile genetic elements on BMPs. Thus, we emphasize the urgency of developing the formation mechanism of plastisphere ARGs and the necessity of controlling BMPs and ARG pollution, especially BMPs, with ever-increasing usage in daily life.

2.
Aging Dis ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39012662

ABSTRACT

The increasing studies indicated that cardiovascular diseases, such as coronary artery disease (CAD), usually induce and exacerbate psychological problems, including anxiety and depression. These psychological issues are admitted as independent risk factors of heart disease as well. The interaction between CAD and anxiety and depression deteriorates the development and prognosis of CAD, which severely threatens the quality of life of patients. Although the existing mechanisms revealed the pathological relationship between CAD and anxiety and depression, there are few studies investigating the correlation between CAD and anxiety and depression from the aspect of gut microbiota (GM) and its metabolites. Therefore, in this review, we summarized whether GM and its metabolites are the emergent bridge between CAD and anxiety and depression. The results showed that there are four kinds of jointly up-regulated bacteria (i.e., Staphylococcus, Escherichia coli, Helicobacter pylori, and Shigella) and five kinds of jointly down-regulated bacteria (i.e., Prevotella, Lactobacillus, Faecalibacterium prausnitzii, Collinsella, and Bifidobacterium) in CAD as well as anxiety and depression. In addition, in CAD and anxiety and depression, the dysbiosis of the former four kinds of bacterium frequently leads to the outburst of inflammatory response, and the dysbiosis of the latter five kinds of bacterium is usually related to the metabolic abnormality of short-chain fatty acids, bile acids, and branched-chain amino acids. Therefore, we believe that GM and its metabolites act as the emergent bridge between CAD and anxiety and depression. The findings of this review provide novel insights and approaches for the clinical treatment of patients with both CAD and anxiety and depression.

4.
Cancer Med ; 13(12): e7224, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888366

ABSTRACT

BACKGROUND: Patients with DNA mismatch repair-proficient/microsatellite stable (pMMR/MSS) colorectal cancer (CRC), which accounts for 85% of all CRC cases, display a poor respond to immune checkpoint inhibitors (i.e., anti-PD-1 antibodies). pMMR/MSS CRC patients with locally advanced cancers need effective combined therapies. METHODS: In this pilot study, we administered six preoperative doses of each 2-week cycle of the anti-PD-1 antibody sintilimab (at a fixed dose of 200 mg), oxaliplatin, and 5-FU/CF (mFOLFOX6) combined with five doses of bevacizumab (the number of doses was reduced to prevent surgical delays) to patients with cT4NxM0 colon or upper rectal cancers. And radical surgery was performed approximately 2 weeks after the last dose of neoadjuvant therapy. The primary endpoint was a pathologic complete response (pCR). We also evaluated major pathologic response (MPR, ≤10% residual viable tumor), radiological and pathological regression, safety, and tumor mutation burden (TMB), and tumor microenvironment (TME) characteristics. RESULTS: By the cutoff date (September 2023), 22 patients with cT4NxM0 pMMR/MSS colon or upper rectal cancers were enrolled and the median follow-up was 24.7 months (IQR: 21.1-26.1). All patients underwent R0 surgical resection without treatment-related surgical delays. pCR occurred in 12 of 22 resected tumors (54.5%) and MPR occurred in 18 of 22 (81.8%) patients. At the cutoff date, all patients were alive, and 21/22 were recurrence-free. Treatment-related adverse events of grade 3 or higher occurred in of 2/22 (9.1%) patients. Among the pCR tumors, two were found to harbor POLE mutations. The degree of pathological regression was significantly greater than that of radiological regression (p = 1.35 × 10-8). The number of CD3+/CD4+ cells in the tumor and stroma in pretreated biopsied tissues was markedly lower in pCR tumors than in non-pCR tumors (p = 0.038 and p = 0.015, respectively). CONCLUSIONS: Neoadjuvant sintilimab combined with bevacizumab and mFOLFOX6 was associated with few side effects, did not delay surgery, and led to pCR and non-pCR in 54.5% and 81.8% of the cases, respectively. Downregulation of CD3/CD4 expression in the tumor and stroma is related to pCR. However, the molecular mechanisms underlying PD-1 blockade-enhanced targeted chemotherapy require further investigation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Bevacizumab , Colorectal Neoplasms , Fluorouracil , Immune Checkpoint Inhibitors , Humans , Male , Female , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Aged , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Fluorouracil/therapeutic use , Fluorouracil/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Pilot Projects , Bevacizumab/therapeutic use , Bevacizumab/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Leucovorin/therapeutic use , Leucovorin/administration & dosage , DNA Mismatch Repair , Adult , Microsatellite Instability , Oxaliplatin/therapeutic use , Oxaliplatin/administration & dosage , Neoadjuvant Therapy/methods , Tumor Microenvironment/immunology , Organoplatinum Compounds/therapeutic use , Organoplatinum Compounds/administration & dosage , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Treatment Outcome
5.
Cell Prolif ; : e13686, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831624

ABSTRACT

The in-depth mechanisms of microRNA regulation of premature ovarian failure (POF) remain unclear. Crispr-cas9 technology was used to construct transgenic mice. The qPCR and Western blot was used to detect the expression level of genes. H&E staining were used to detect ovarian pathological phenotypes. We found that the expression levels of microRNA-3061 were significantly higher in ovarian granulosa cells (OGCs) of POF mouse models than in controls. The miR-3061+/-/AMH-Cre+/- transgenic mice manifested symptoms of POF. RNA-Seq and luciferase reporter assay confirmed that the PAX7 was one of the target genes negatively regulated by microRNA-3061 (miR-3061-5p). Moreover, PAX7 mediated the expression of non-canonical Wnt/Ca2+ signalling pathway by binding to the motifs of promoters to stimulate the transcriptional activation of Wnt5a and CamK2a. In contrast, specific knock-in of microRNA-3061 in OGCs significantly downregulated the expression levels of PAX7 and inhibited the expression of downstream Wnt/Ca2+ signalling pathway. We also discerned a correlation between the expression levels of mRNAs of the Wnt/Ca2+ signalling pathway and the levels of E2 and FSH in POF patients by examining gene expression in the follicular fluid-derived exosomes of women. We confirmed that overexpression of microRNA-3061 induced proliferative inhibition of OGCs and ultimately induced POF in mice by suppressing the transcription factor PAX7 and downregulating expression levels of its downstream Wnt/Ca2+ signalling pathway genes.

6.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891830

ABSTRACT

The dynamic process of Drosophila spermatogenesis involves asymmetric division, mitosis, and meiosis, which ultimately results in the production of mature spermatozoa. Disorders of spermatogenesis can lead to infertility in males. ADAR (adenosine deaminase acting on RNA) mutations in Drosophila cause male infertility, yet the causative factors remain unclear. In this study, immunofluorescence staining was employed to visualize endogenous ADAR proteins and assess protein levels via fluorescence-intensity analysis. In addition, the early differentiation disorders and homeostatic alterations during early spermatogenesis in the testes were examined through quantification of transit-amplifying region length, counting the number of GSCs (germline stem cells), and fertility experiments. Our findings suggest that deletion of ADAR causes testicular tip transit-amplifying cells to accumulate and become infertile in older male Drosophila. By overexpressing ADAR in early germline cells, male infertility can be partially rescued. Transcriptome analysis showed that ADAR maintained early spermatogenesis homeostasis through the bone-morphogenetic-protein (BMP) signaling pathway. Taken together, these findings have the potential to help explore the role of ADAR in early spermatogenesis.


Subject(s)
Adenosine Deaminase , Bone Morphogenetic Proteins , Drosophila Proteins , Drosophila melanogaster , Signal Transduction , Spermatogenesis , Animals , Male , Spermatogenesis/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Infertility, Male/genetics , Infertility, Male/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Testis/metabolism
7.
Adv Sci (Weinh) ; : e2402162, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708715

ABSTRACT

High-performance soft magnetic materials are important for energy conservation and emission reduction. One challenge is achieving a combination of reliable temperature stability, high resistivity, high Curie temperature, and high saturation magnetization in a single material, which often comes at the expense of intrinsic coercivity-a typical trade-off in the family of soft magnetic materials with homogeneous microstructures. Herein, a nanostructured FeCoNiSiAl complex concentrated alloy is developed through a hierarchical structure strategy. This alloy exhibits superior soft magnetic properties up to 897 K, maintaining an ultra-low intrinsic coercivity (13.6 A m-1 at 297 K) over a wide temperature range, a high resistivity (138.08 µΩ cm-1 at 297 K) and the saturation magnetization with only a 16.7% attenuation at 897 K. These unusual property combinations are attributed to the dual-magnetic-state nature with exchange softening due to continuous crystal ordering fluctuations at the atomic scale. By deliberately controlling the microstructure, the comprehensive performance of the alloy can be tuned and controlled. The research provides valuable guidance for the development of soft magnetic materials for high-temperature applications and expands the potential applications of related functional materials in the field of sustainable energy.

8.
Adv Sci (Weinh) ; : e2306217, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742466

ABSTRACT

Radiation proctopathy (RP) is a common complication of radiotherapy for pelvic malignancies with high incidence. RP accompanies by microbial dysbiosis. However, how the gut microbiota affects the disease remains unclear. Here, metabolomics reveals that the fecal and serous concentrations of microbiota-derived 3-hydroxybutyrate (3HB) are significantly reduced in RP mice and radiotherapeutic patients. Moreover, the concentration of 3HB is negatively associated with the expression of proinflammatory IL6 that is increased along with the severity of radiation damage. 3HB treatment significantly downregulates IL6 expression and alleviates IL6-mediated radiation damage. Irradiated cell-fecal microbiota co-culture experiments and in vivo assays show that such a radioprotection of 3HB is mediated by GPR43. Microbiome analysis reveals that radiation leads to a distinct bacterial community compared to untreated controls, in which Akkermansia muciniphila is significantly reduced in RP mice and radiotherapeutic patients and is associated with lower 3HB concentration. Gavage of A. muciniphila significantly increases 3HB concentration, downregulates GPR43 and IL6 expression, and ameliorates radiation damage. Collectively, these results demonstrate that the gut microbiota, including A. muciniphila, induce higher concentrations of 3HB to block GPR43-mediated IL6 signaling, thereby conferring radioprotection. The findings reveal a novel implication of the gut-immune axis in radiation pathophysiology, with potential therapeutic applications.

9.
Adv Mater ; : e2403531, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733356

ABSTRACT

Flexible perovskite solar cells (pero-SCs) have the potential to overturn the application scenario of silicon photovoltaic technology. However, their mechanical instability severely impedes their practical applicability, and the corresponding intrinsic degradation mechanism remains unclear. In this study, the degradation behavior of flexible pero-SCs is systematically analyzed under mechanical stress and it is observed that the structural failure first occurs in the polycrystal perovskite film, then extend to interfaces. To suppress the structural failure, pentaerythritol triacrylate, a crosslinked molecule with three stereoscopic crosslink sites, is employed to establish a 3D polymer network in both the interface and bulk perovskite. This network reduced the Young's modulus of the perovskite and simultaneously enhanced the interfacial toughness. As a result, the formation of cracks and delamination, which occur under a high mechanical stress, is significantly suppressed in the flexible pero-SC, which consequently retained 92% of its initial power conversion efficiency (PCE) after 20 000 bending cycles. Notably, the flexible device also shows a record PCE of 24.9% (certified 24.48%).

10.
Phys Chem Chem Phys ; 26(16): 12594-12599, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38596870

ABSTRACT

We report the spin reorientation transition (SRT) and the low field controllable continuous spin switching (SSW) of the Tm0.75Yb0.25FeO3 (TYFO) single crystal in this study. The SRT, characterized by the transition from Γ2(Fx, Cy, Gz)-Γ4(Gx, Ay, Fz), occurs within the temperature range of 20-27 K. Under an external magnetic field of 50 Oe, the SSW occurs along the c-axis at approximately 98 K due to the reversal of Tm3+ magnetic moment induced by the magnetic coupling change between Tm3+ and Fe3+, transitioning from a parallel to an antiparallel alignment. Notably, a continuous SSW is observed along the a-axis at low temperatures, which has not been previously reported in rare earth orthoferrites. This unique behavior can be easily manipulated by low magnetic fields within the temperature range of 2-20 K. Both the spin reorientation transition and spin switching phenomena in the TYFO single crystal arise from interactions between rare earth ions and iron ions and can be effectively regulated by applied low magnetic fields, making it a promising material for low-field spin devices.

11.
Biomed Pharmacother ; 175: 116656, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678964

ABSTRACT

Depression is a common mental disorder and its pathogenesis is not fully understood. However, more and more evidence shows that mitochondrial dynamics dysfunction may play an important role in the occurrence and development of depression. Mitochondria are the centre of energy production in cells, and are also involved in important processes such as apoptosis and oxidative stress. Studies have found that there are abnormalities in mitochondrial function in patients with depression, including mitochondrial morphological changes, mitochondrial dynamics disorders, mitochondrial DNA damage, and impaired mitochondrial respiratory chain function. These abnormalities may cause excessive free radicals and oxidative stress in mitochondria, which further damage cells and affect the balance of neurotransmitters, causing or aggravating depressive symptoms. Studies have shown that mitochondrial dynamics dysfunction may participate in the occurrence and development of depression by affecting neuroplasticity, inflammation and neurotransmitters. This article reviews the effects of mitochondrial dynamics dysfunction on the pathogenesis of depression and its potential molecular pathway. The restorers for the treatment of depression by regulating the function of mitochondrial dynamics were summarized and the possibility of using mitochondrial dynamics as a biomarker of depression was discussed.


Subject(s)
Depression , Mitochondria , Mitochondrial Dynamics , Oxidative Stress , Humans , Depression/metabolism , Depression/physiopathology , Animals , Mitochondria/metabolism , Mitochondria/pathology , Oxidative Stress/physiology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism
12.
EClinicalMedicine ; 70: 102543, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38516099

ABSTRACT

Background: Treatment options remain rather limited for extensive disease small cell lung cancer (ED-SCLC) patients in second or further-line setting. Methods: The phase 2 investigator-initiated non-randomized study enrolled patients who had disease progression on at least one line of platinum-based chemotherapy. Participants received intravenous sintilimab 200 mg on day one and oral daily anlotinib 12 mg on days 1-14 once every three weeks per cycle. The primary endpoint was progression-free survival (PFS). The secondary endpoints included overall survival (OS), objective response rate (ORR), disease control rate (DCR) and safety. This study is registered with ClinicalTrials.gov (NCT04055792). Findings: Forty-two patients were enrolled between August 29, 2019 and December 26, 2021 at Henan Cancer Hospital in China. 37 patients were evaluable for efficacy. The median follow-up was 24.8 months (IQR: 16.9-28.2). The median PFS was 6.1 months (95% CI: 5.0-7.3). The OS was 12.7 months (95% CI: 7.1-18.2). The ORR was 56.8% (21/37, 95% CI: 40.0-73.5) and the DCR was 89.2% (33/37, 95% CI: 78.7-99.7). Forty patients (40/42, 95%) had at least one treatment-related adverse event (TRAE). Immune-related adverse events (irAEs) were reported in 39 patients (39/42, 93%), while grade 3 or higher irAEs occurred in 11 patients (11/42, 26%). The most frequent irAEs were hypothyroidism (16/42, 38%), elevated gamma-glutamyl transpeptidase (15/42, 36%) and elevated creatine kinase MB (15/42, 36%). The most frequent grade 3 or higher irAEs were elevated gamma-glutamyl transpeptidase (5/42, 12%) and increased aspartate aminotransferase (3/42, 7%). Interpretation: Sintilimab plus anlotinib demonstrated promising antitumor activities as second or further-line therapy for ED-SCLC and had manageable toxicities. The findings support further randomized controlled trials of this combination regimen for ED-SCLC. Funding: Henan Province Health and Youth Subject Leader Training Project, Henan Health Science and Technology Innovation Talents, ZHONGYUAN QIANREN JIHUA, Henan International Joint Laboratory of drug resistance and reversal of targeted therapy for lung cancer, Tumor Research Fund of Anti-Angiogenesis Targeted Therapy of China Anti-Cancer Association.

13.
J Food Drug Anal ; 32(1): 79-102, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38526587

ABSTRACT

Guhong injection (GHI) has been applied in the therapy of cardio-cerebrovascular disease in clinic, but there is no report about the pharmacokinetic/pharmacodynamic (PK/PD) research on GHI treating myocardial ischemia/reperfusion (MI/R) injury in rats. In this study, eight compounds of GHI in plasma, including N-acetyl-L-glutamine (NAG), chlorogenic acid (CGA), hydroxysafflor yellow A (HSYA), p-coumaric acid ( pCA), rutin, hyperoside, kaempferol-3-O-rutinoside, and kaempferol-3-O-glucoside, were quantified by LC-MS/MS. We discovered that the values of t1/2ß, k12, V2, and CL2 were larger than those of t1/2α, k21, V1, and CL1 for all compounds. The levels of four biomarkers, creatine kinase-MB (CK-MB), cardiac troponin I (cTn I), ischemia-modified albumin (IMA), and alpha-hydroxybutyrate dehydrogenase (α-HBDH) in plasma were determined by ELISA. The elevated level of these biomarkers induced by MI/R was declined to different degrees via administrating GHI and verapamil hydrochloride (positive control). The weighted regression coefficients of NAG, HSYA, CGA, and pCA in PLSR equations generated from The Unscrambler X software (version 11) were mostly minus, suggesting these four ingredients were positively correlated to the diminution of the level of four biomarkers. Emax and ED50, two parameters in PK/PD equations that were obtained by adopting Drug and Statistics software (version 3.2.6), were almost enlarged with the rise of GHI dosage. Obviously, all analytes were dominantly distributed and eliminated in the peripheral compartment with features of rapid distribution and slow elimination. With the enhancement of GHI dosage, the ingredients only filled in the central compartment if the peripheral compartment was replete. Meanwhile, high-dose of GHI generated the optimum intrinsic activity, but the affinity of compounds with receptors was the worst, which may be caused by the saturation of receptors. Among the eight analytes, NAG, HSYA, CGA, and pCA exhibited superior cardioprotection, which probably served as the pharmacodynamic substance basis of GHI in treating MI/R injury.


Subject(s)
Glutamine/analogs & derivatives , Myocardial Reperfusion Injury , Plant Extracts , Animals , Rats , Myocardial Reperfusion Injury/drug therapy , Biomarkers , Chromatography, Liquid , Least-Squares Analysis , Serum Albumin , Tandem Mass Spectrometry
14.
Apoptosis ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498249

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy is highly effective for treating blood cancers such as B-cell malignancies, however, its effectiveness as an approach to treat solid tumors remains to be further explored. Here, we focused on the development of CAR-T cell therapies targeting tropomyosin-related kinase receptor B (TRKB), a highly expressed protein that is significantly associated with tumor progression, malignancy, and drug resistance in multiple forms of aggressive solid tumors. To achieve this, we screened brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NTF4) ligand-based CAR-T cells for their efficiency in targeting the TRKB receptor in the context of solid tumors, particularly hepatocellular carcinoma and pancreatic cancer. We demonstrated that TRKB is overexpressed not only in hepatocellular carcinoma and pancreatic carcinoma cell lines but also in cancer stem-like cells (CSCs). Notably, BDNF-CAR T and NTF4-CAR T cells could not only effectively target and kill TRKB-expressing pan-cancer cell lines in a dose-dependent manner but also effectively kill CSCs. We also performed in vivo studies to show that NTF4-CAR T cells have a better potential to inhibit the tumor growth of hepatocellular carcinoma xenografts in mice, compared with BDNF-CAR T cells. Taken together, our findings suggest that CAR-T targeting TRKB may be a promising approach for developing novel therapies to treat solid cancers.

15.
Adv Mater ; 36(27): e2402350, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38554138

ABSTRACT

High-boiling-point nonhalogenated solvents are superior solvents to produce large-area organic solar cells (OSCs) in industry because of their wide processing window and low toxicity; while, these solvents with slow evaporation kinetics will lead excessive aggregation of state-of-the-art small molecule acceptors (e.g. L8-BO), delivering serious efficiency losses. Here, a heterogeneous nucleating agent strategy is developed by grafting oligo (ethylene glycol) side-chains on L8-BO (BTO-BO). The formation energy of the obtained BTO-BO; while, changing from liquid in a solvent to a crystalline phase, is lower than that of L8-BO irrespective of the solvent type. When BTO-BO is added as the third component into the active layer (e.g. PM6:L8-BO), it easily assembles to form numerous seed crystals, which serve as nucleation sites to trigger heterogeneous nucleation and increase nucleation density of L8-BO through strong hydrogen bonding interactions even in high-boiling-point nonhalogenated solvents. Therefore, it can effectively suppress excessive aggregation during growth, achieving ideal phase-separation active layer with small domain sizes and high crystallinity. The resultant toluene-processed OSCs exhibit a record power conversion efficiency (PCE) of 19.42% (certificated 19.12%) with excellent operational stability. The strategy also has superior advantages in large-scale devices, showing a 15.03-cm2 module with a record PCE of 16.35% (certificated 15.97%).

16.
Adv Mater ; 36(25): e2400218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38519145

ABSTRACT

Perovskite solar cells (pero-SCs) are highly unstable even under trace water. Although the blanket encapsulation (BE) strategy applied in the industry can effectively block moisture invasion, the commercial UV-curable adhesives (UVCAs) for BE still trigger power conversion efficiency deterioration, and the degradation mechanism remains unknown. For the first time, the functions of commercial UVCAs are revealed in BE-processed pero-SCs, where the small-sized monomer easily permeates to the perovskite surface, forming an insulating barrier to block charge extraction, while the high-polarity moiety can destroy perovskite lattice. To solve these problems, a macromer, named PIBA is carefully designed, by grafting two acrylate terminal groups on the highly gastight polyisobutylene and realizes an increased molecular diameter as well as avoided high-polarity groups. The PIBA macromer can stabilize on pero-SCs and then sufficiently crosslink, forming a compact and stable network under UV light without sacrificing device performance during the BE process. The resultant BE devices show negligible efficiency loss after storage at 85% relative humidity for 2000 h. More importantly, these devices can even reach ISO 20653:2013 Degrees of protection IPX7 standard when immersed in one-meter-deep water. This BE strategy shows good universality in enhancing the moisture stability of pero-SCs, irrespective of the perovskite composition or device structure.

17.
IEEE Trans Cybern ; PP2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416630

ABSTRACT

This article investigates the extended dissipative finite-time boundedness (ED-FTB) problem for fuzzy switched systems under deception attacks. To improve the network resource efficiency, a multidomain probabilistic event-triggered mechanism (MDPETM) is proposed. The mode mismatched phenomenon is modeled based on the switching delay information between the controller mode and the system mode. To extract the true signal generated by the MDPETM, a virtual delay concept is developed. The constraint that the controller and the system must have the same premise variables is removed. Based on the MDPETM, mismatched fuzzy state feedback controllers are first devised which may not share the same modes with the system. Then, by establishing fuzzy basis and controller mode-dependent Lyapunov functionals, sufficient criteria free of nonlinear terms existing in the literature are derived, which ensure the ED-FTB of the closed-loop system under admissible delays and deception attacks. Finally, an application-oriented one-link robotic arm system is utilized to validate the theoretical results.

18.
Clin Lung Cancer ; 25(4): 347-353.e1, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38418264

ABSTRACT

OBJECTIVE: To analyze the factors associated with EGFR-mutated lung cancer with leptomeningeal metastasis (LM) in the real world that affects the prognosis of patients. MATERIALS AND METHODS: The clinical data of 123 patients with advanced EGFR mutated lung cancer combined with LM treated at Henan Cancer Hospital and confirmed by histology between January 2016 and December 2020 were retrospectively collected, and all patients were followed up until September 2021. Analyze the median overall survival (mOS) time of patients with clinical characteristics and treatment factors to explore the factors influencing the prognosis of lung cancer patients with LM. RESULTS: A total of 123 patients with EGFR-mutated lung cancer and LM were included in this study. Overall, patients with exon 19 deletion (19del) in the classical mutation of the EGFR gene had a prolonged mOS compared to patients with exon 21 L858R mutation (21L858R) (30.1 months vs. 26.0 months); patients with primary LM (mOS 21.2 months) had a significantly shorter mOS than those with secondary LM (mOS 28.3 months); mOS was also significantly shorter in patients with combined brain metastases (mOS of 25.4 months) than in patients without combined brain metastases (mOS of 33.4 months); Patients treated with tyrosine kinase inhibitors (TKI) combined with antiangiogenic therapy (bevacizumab) experienced delayed onset of LM (mOS1: 19.4 months vs. 13.9 months), and prolonged survival after LM compared with those treated with EGFR-TKI alone (mOS2: 14.5 months vs. 10.0 months); There is no survival benefit to the patients treated with EGFR-TKI combined with chemotherapy compared to the patients treated with EGFR-TKI alone. CONCLUSION: Among NSCLC-LM patients with EGFR mutation, receiving EGFR-TKI combined with antiangiogenic therapy may result in a better survival benefit. The factors of primary LM, combined brain metastasis may be prognostic factors for poor OS.


Subject(s)
ErbB Receptors , Lung Neoplasms , Mutation , Humans , Male , Retrospective Studies , ErbB Receptors/genetics , Female , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Middle Aged , Prognosis , Mutation/genetics , Aged , Adult , Survival Rate , Meningeal Neoplasms/secondary , Meningeal Neoplasms/genetics , Meningeal Neoplasms/mortality , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Meningeal Carcinomatosis/secondary , Meningeal Carcinomatosis/genetics , Meningeal Carcinomatosis/drug therapy , Follow-Up Studies , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Aged, 80 and over , Protein Kinase Inhibitors/therapeutic use
19.
Hereditas ; 161(1): 3, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38173016

ABSTRACT

BACKGROUND: Vascular aging is an important pathophysiological basis for the senescence of various organs and systems in the human body, and it is a common pathogenetic trigger for many chronic diseases in the elderly. METHODS: The extracellular vesicles (EVs) from young and aged umbilical vein endothelial cells were isolated and identified by qPCR the differential expression levels of 47 mRNAs of genes closely related to aging in the two groups. RESULTS: There were significant differences in the expression levels of 18 genes (we noted upregulation in PLA2G12A, TP53BP1, CD144, PDE11A, FPGT, SERPINB4, POLD1, and PPFIBP2 and downregulation in ATP2C2, ROBO2, RRM2, GUCY1B1, NAT1-14, VEGFR2, WTAPP1, CD146, DMC1, and GRIK2). Subsequent qPCR identification of the above-mentioned genes in PBMCs and plasma-EVs from the various age groups revealed that the trend in expression levels in peripheral blood plasma-EVs of the different age groups was approximately the same as that in PBMCs. Of these mRNAs, the expression of four genes-PLA2G12A, TP53BP1, OPRL1, and KIAA0895-was commensurate with increasing age. In contradistinction, the expression trend of four genes (CREG1, PBX1, CD34, and SLIT2) was inversely proportional to the increase in age. Finally, by taking their intersection, we determined that the expression of TP53BP1 was upregulated with increasing human age and that CD34 and PBX1 were downregulated with increasing age. CONCLUSION: Our study indicates that human peripheral blood plasma-EV-derived TP53BP1, CD34, and PBX1 potentially comprise a noninvasive biomarker for assessing and predicting vascular aging.


Subject(s)
Endothelial Cells , Extracellular Vesicles , Aged , Humans , Aging/genetics , Biomarkers/metabolism , Endothelial Cells/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Tumor Suppressor p53-Binding Protein 1/metabolism , Antigens, CD34/metabolism
20.
Angew Chem Int Ed Engl ; 63(5): e202316183, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38063461

ABSTRACT

To date, perovskite solar cells (pero-SCs) with doped 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD) hole transporting layers (HTLs) have shown the highest recorded power conversion efficiencies (PCEs). However, their commercialization is still impeded by poor device stability owing to the hygroscopic lithium bis(trifluoromethanesulfonyl)imide and volatile 4-tert-butylpyridine dopants as well as time-consuming oxidation in air. In this study, we explored a series of single-component iodonium initiators with strong oxidability and different electron delocalization properties to precisely manipulate the oxidation states of Spiro-OMeTAD without air assistance, and the oxidation mechanism was clearly understood. Iodine (III) in the diphenyliodonium cation (IP+ ) can accept a single electron from Spiro-OMeTAD and forms Spiro-OMeTAD⋅+ owing to its strong oxidability. Moreover, because of the coordination of the strongly delocalized TFSI- with Spiro-OMeTAD⋅+ in a stable radical complex, the resulting hole mobility was 30 times higher than that of pristine Spiro-OMeTAD. In addition, the IP-TFSI initiator facilitated the growth of a homogeneous and pinhole-free Spiro-OMeTAD film. The pero-SCs based on this oxidizing HTL showed excellent efficiencies of 25.16 % (certified: 24.85 % for 0.062-cm2 ) and 20.71 % for a 15.03-cm2 module as well as remarkable overall stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...