Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
J Environ Manage ; 359: 120880, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38669879

ABSTRACT

Microorganisms are essential components of underground life systems and drive elemental cycling between plants and soil. Yet, in the ecologically fragile Loess Plateau, scant attention has been paid to the response of microbial communities to organic carbon (C) chemistry of both leaves and soils under different revegetation conditions, as well as subsequent alternation in their C metabolic functions. Here, Fourier transform infrared (FTIR) spectrum, amplicon sequencing of 16S rRNA and ITS, and temporal incubation with Biolog-Eco 96 plates were combined to explore the vegetative heterogeneity of microbial community properties and metabolic functions, as well as their regulatory mechanisms in three typical revegetation types including Robinia pseudoacacia L. (RF), Caragana korshinskii KOM. (SL), and abandoned grassland (AG). We observed higher bacterial-to-fungal ratios (B: F = 270.18) and richer copiotrophic bacteria (Proteobacteria = 33.08%) in RF soil than those in AG soil, suggesting that microbes were dominated by r-strategists in soil under RF treatment, which is mainly related to long-term priming of highly bioavailable leaf C (higher proportion of aromatic and hydrophilic functional groups and lower hydrophobicity). Conversely, microbial taxa in AG soil, which was characterized by higher leaf organic C hydrophobicity (1.39), were dominated by relatively more abundant fungi (lower B: F ratio = 149.49) and oligotrophic bacteria (Actinobacteria = 29.30%). The co-occurrence network analysis showed that microbial interactive associations in RF and AG soil were more complex and connective than in SL soil. Furthermore, Biolog-Eco plate experiments revealed that microorganisms tended to utilize labile C compounds (carbohydrates and amino acids) in RF soil and resistant C compounds (polymers) in AG soil, which were consistent with the substrate adaptation strategies of predominant microbial trophic groups in different revegetation environments. Meanwhile, we observed greater microbial metabolic activity and diversity advantages in RF vegetation. Collectively, we suggest that besides the nutrient variables in the leaf-soil system, the long-term regulation of the microbial community by the C chemistry of the leaf sequentially alters the microbial metabolic profiles in a domino-like manner. RF afforestation is more conducive to restoring soil microbial fertility (including microbial abundance, diversity, interactive association, and metabolic capacity). Our study potentially paves the way for achieving well-managed soil health and accurate prediction of C pool dynamics in areas undergoing ecological restoration of the Loess Plateau.

2.
Plants (Basel) ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38592770

ABSTRACT

In grassland ecosystems, the decomposition of litter serves as a vital conduit for nutrient transfer between plants and soil. The aim of this study was to depict the dynamic process of grass litter decomposition and explore its major driver. Three typical grasses [Stipa bungeana Trin (St. B), Artemisia sacrorun Ledeb (Ar. S), and Thymus mongolicus Ronniger (Th. M)] were selected for long-term litter decomposition. Experiments were conducted using three single litters, namely, St. B, Ar. S, and Th. M, and four different compositions of mixed litter: ML1 (55% St. B and 45% Th. M), ML2 (55% St. B and 45% Ar. S), ML3 (75% St. B and 25% Th. M), and ML4 (75% St. B and 25% Ar. S). The dynamic patterns of mass and microelements (Ca, Mg, Fe, Mn, Cu, and Zn) within different litter groups were analyzed. Our findings indicated that, after 1035 days of decomposition, the proportion of residual mass for the single litters was as follows: Th. M (60.6%) > St. B (47.3%) > Ar. S (44.3%), and for the mixed groups it was ML1 (48.0%) > ML3 (41.6%) > ML2 (40.9) > ML4 (38.4%). Mixed cultivation of the different litter groups accelerated the decomposition process, indicating that the mixture of litters had a synergistic effect on litter decomposition. The microelements of the litter exhibited an initial short-term increase followed by long-term decay. After 1035 days of decomposition, the microelements released from the litter were, in descending order, Mg > Ca > Fe > Cu > Mn > Zn. Compared to the separately decomposed St. B litter, mixing led to an inhibition of the release of Ca (antagonistic effect), while it promoted the release of Mg, Cu, and Zn (synergistic effect). For the single litter, the stepwise regression analysis showed that Ca was the dominant factor determining early litter decomposition. Mg, Mn, and Cu were the dominant factors regulating later litter decomposition. For the mixed litter groups, Ca, Mn, and Mg were the dominant factors closely related to early decomposition, and TN emerged as a key factor regulating the mass loss of mixtures during later decomposition. In summary, nitrogen and microelements co-drive the decomposition of typical grass litter. Our study underscores that, in the succession process of grassland, the presence of multiple co-existing species led to a faster loss of plant-derived materials (litter mass and internal elements), which was primarily modulated by species identity and uniformity.

3.
Huan Jing Ke Xue ; 44(5): 2746-2755, 2023 May 08.
Article in Chinese | MEDLINE | ID: mdl-37177947

ABSTRACT

Exploring the biogeochemical cycle characteristics of soil carbon, nitrogen, and phosphorus in farmland in the dryland of the loess plateau can provide scientific basis and technical support for efficient crop production and sustainable land use. Here, based on a long-term (24 year) straw return field experiment in Shouyang, Shanxi province, the effects of different straw return regimes, i.e., straw mulching (SM), direct straw return (DS), animal-digested straw return (AS), and non-straw return (CK), on the stoichiometric ratio of soil elements and extracellular enzyme activities were studied. The vector angle and length were calculated to indicate the resource constraints faced by microorganisms. The vector angle was greater than 45° and less than 45°, indicating that microorganisms were limited by phosphorus and nitrogen, respectively. The greater the deviation from 45°, the greater the degree of limitation, and the longer the vector length, the more severely limited by carbon. The results showed that ① the soil C/N and C/P of long-term straw returning ranged from 9.81 to 14.28 and from 14.58 to 21.92, with the mean values of 12.36 and 17.51, respectively, which were 6.0% and 4.2% lower than that at the initial stage of the experiment. The soil N/P was distributed between 1.27 and 1.57, with an average of 1.42, which was 2.2% higher than that in the initial stage. The soil C/N and C/P ratios showed a trend of first decreasing and then increasing, the soil N/P ratio basically showed a flat trend, and there was no significant difference in soil element metering ratios between different straw returning treatments. ② Compared with the 24-year long-term non-straw return treatment, the activities of ß-1,4-glucosidase (BG) and ß-1,4-N-acetylglucosaminidase (NAG) in the soil of the long-term straw mulching treatment increased by 134.4% and 107.5% (P<0.05), the activities of BG and alkaline phosphatase (AP) in the soil of the long-term straw mulching treatment decreased by 59.3% and 59.5% (P<0.05), respectively, and the activities of NAG in the soil of the long-term straw mulching treatment increased by 102.8% (P<0.05). Under the long-term straw returning treatment, soil microorganisms were faced with carbon and phosphorus limitation as a whole. Long-term straw mulching aggravated microbial carbon limitation, and animal-digested straw return could alleviate the degree of carbon limitation. Compared with that in the 24-year long-term non-straw return treatment, soil EEAC/N could be significantly reduced by the animal-digested straw return treatment, and soil EEAC/P could be increased by the direct straw return treatment. The three straw returning methods had no significant indigenous effect on soil EEAN/P. The overall vector angle was greater than 45°, and the vector length increased by 3.8%-20.1% compared with that in the initial stage. ③ Correlation analysis showed that C and N inputs were significantly negatively correlated with BG activity; available nitrogen was significantly correlated with NAG activity, AP activity, and EEAC/N; C/P was significantly positively correlated with EEAC/N; there were significant correlations between N/P and NAG activity, AP activity, EEAC/N, and EEAC/P; and there was no significant correlation between EEAN/P and any environmental factors. In conclusion, the availability of soil nitrogen and phosphorus elements and N/P ratio had significant effects on soil extracellular enzyme activity and stoichiometric characteristics under different long-term straw returning treatments. In the future, more attention should be paid to the improvement of organic carbon and the promotion of nitrogen and phosphorus availability in farmland soil in soil-efficient cultivation and agricultural production activities.


Subject(s)
Carbon , Soil , Soil/chemistry , Carbon/analysis , Phosphorus/analysis , Nitrogen/analysis , Fertilizers/analysis , Agriculture/methods , China , Soil Microbiology
4.
Plants (Basel) ; 13(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38202325

ABSTRACT

The cultivated peanut (Arachis hypogaea L.) is an important oilseed crop worldwide, and fatty acid composition is a major determinant of peanut oil quality. In the present study, we conducted a genome-wide association study (GWAS) for nine fatty acid traits using the whole genome sequences of 160 representative Chinese peanut landraces and identified 6-1195 significant SNPs for different fatty acid contents. Particularly for oleic acid and linoleic acid, two peak SNP clusters on Arahy.09 and Arahy.19 were found to contain the majority of the significant SNPs associated with these two fatty acids. Additionally, a significant proportion of the candidate genes identified on Arahy.09 overlap with those identified in early studies, among which three candidate genes are of special interest. One possesses a significant missense SNP and encodes a known candidate gene FAD2A. The second gene is the gene closest to the most significant SNP for linoleic acid. It codes for an MYB protein that has been demonstrated to impact fatty acid biosynthesis in Arabidopsis. The third gene harbors a missense SNP and encodes a JmjC domain-containing protein. The significant phenotypic difference in the oleic acid/linoleic acid between the genotypes at the first and third candidate genes was further confirmed with PARMS analysis. In addition, we have also identified different candidate genes (i.e., Arahy.ZV39IJ, Arahy.F9E3EA, Arahy.X9ZZC1, and Arahy.Z0ELT9) for the remaining fatty acids. Our findings can help us gain a better understanding of the genetic foundation of peanut fatty acid contents and may hold great potential for enhancing peanut quality in the future.

5.
Front Oncol ; 12: 894970, 2022.
Article in English | MEDLINE | ID: mdl-35719964

ABSTRACT

Image segmentation plays an essential role in medical imaging analysis such as tumor boundary extraction. Recently, deep learning techniques have dramatically improved performance for image segmentation. However, an important factor preventing deep neural networks from going further is the information loss during the information propagation process. In this article, we present AX-Unet, a deep learning framework incorporating a modified atrous spatial pyramid pooling module to learn the location information and to extract multi-level contextual information to reduce information loss during downsampling. We also introduce a special group convolution operation on the feature map at each level to achieve information decoupling between channels. In addition, we propose an explicit boundary-aware loss function to tackle the blurry boundary problem. We evaluate our model on two public Pancreas-CT datasets, NIH Pancreas-CT dataset, and the pancreas part in medical segmentation decathlon (MSD) medical dataset. The experimental results validate that our model can outperform the state-of-the-art methods in pancreas CT image segmentation. By comparing the extracted feature output of our model, we find that the pancreatic region of normal people and patients with pancreatic tumors shows significant differences. This could provide a promising and reliable way to assist physicians for the screening of pancreatic tumors.

6.
Nano Lett ; 22(13): 5544-5552, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35699945

ABSTRACT

In situ monitoring of the evolution of intermediates and catalysts during hydrogen oxidation reaction (HOR) processes and elucidating the reaction mechanism are crucial in catalysis and energy science. However, spectroscopic information on trace intermediates on catalyst surfaces is challenging to obtain due to the complexity of interfacial environments and lack of in situ techniques. Herein, core-shell nanoparticle-enhanced Raman spectroscopy was employed to probe alkaline HOR processes on representative PtRu surfaces. Direct spectroscopic evidence of an OHad intermediate and RuOx (Ru(+3)/Ru(+4)) surface oxides is simultaneously obtained, verifying that Ru doping onto Pt promotes OHad adsorption on the RuOx surface to react with Had adsorption on the Pt surface to form H2O. In situ Raman, XPS, and DFT results reveal that RuOx coverage tunes the electronic structure of PtRuOx to optimize the adsorption energy of OHad on catalyst surfaces, leading to an improvement in HOR activity. Our findings provide mechanistic guidelines for the rational design of HOR catalysts with high activity.

7.
Plants (Basel) ; 10(6)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070508

ABSTRACT

Peanut (Arachis hypogaea L.) is an important oilseed crop worldwide, and peanut height has been shown to be closely related to yield, therefore a better understanding of the genetic base of plant height-related traits may allow us to have better control of crop yield. Plant height-related traits are quantitative traits that are genetically controlled by many genes, and distinct quantitive trait loci (QTLs) may be identified for different peanut accessions/genotypes. In the present study, in order to gain a more complete picture of the genetic base for peanut height-related traits, we first make use of the high quality NGS sequence data for 159 peanut accessions that are available within our research groups, to carry out a GWAS study for searching plant height-related regions. We then perform a literature survey and collect QTLs for two plant height-related traits (Ph: peanut main stem height, and Fbl: the first branch length) from earlier related QTL/GWAS studies in peanut. In total, we find 74 and 21 genomic regions that are, associated with traits Ph and Fbl, respectively. Annotation of these regions found a total of 692 and 229 genes for, respectively, Ph and Fbl, and among those genes, 158 genes are shared. KEGG and GO enrichment analyses of those candidate genes reveal that Ph- and Fbl-associated genes are both enriched in the biosynthesis of secondary metabolites, some basic processes, pathways, or complexes that are supposed to be crucial for plant development and growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...