Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202410719, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943313

ABSTRACT

Modulating the electronic state of multicomponent covalent organic framework (COF) electrocatalysts is crucial for enhancing catalytic activity. However, the effect of dimensionality on their physicochemical functionalities is still lacking. Herein, we report an interlaced unsaturated 2D and saturated 3D strategy to develop multicomponent-regulated COFs with tunable gradient dimensionality for high selectivity and activity electrocatalysis. Compared with the two-component 2D and 3D model COFs, the 2D/3D framework interlaced COFs with locally irregular dimensions and electronic structures are more practical in optimizing the intrinsic electrode surface reaction and mass transfer. Remarkably, the unsaturated 2D-inserted 3D TAE-COF regulates the adsorption mode of OOH* species to supply a favorable dynamic pathway for the H2O2 process, thereby achieving an excellent production rate of 8.50 mol gcat -1 h-1. Moreover, utilizing theoretical calculation and in situ ATR-FTIR experiment, we found that the central carbon atom of the tetraphenyl-based unit (site-1 and site-6) are potential active sites. This strategy of operating the adsorption ability of reactants with dimensionality-interconnected building blocks provides an idea for designing durable and efficient electrocatalysts.

2.
J Hazard Mater ; 472: 134421, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38718517

ABSTRACT

Currently, the hidden risk of microplastics in the coagulation process has attracted much attention. However, previous studies aimed at improving the removal efficiency of microplastics and ignored the importance of interactions between microplastics and natural organic matter (NOM). This study investigated how polystyrene micro/nano particles impact the release of NOM during the aging of flocs formed by aluminum-based coagulants Al13 and AlCl3. The results elucidated that nano-particles with small particle sizes and agglomerative states are more likely to interact with coagulants. After 7 years of floc aging, the DOC content of the nano system decreased by more than 40%, while the micron system did not change significantly. During coagulation, the benzene rings in polystyrene particles form complexes with electrophilic aluminum ions through π-bonding, creating new Al-O bonds. NOM tends to adsorb at micro/nano plastic interfaces due to hydrophobic interactions and conformational entropy. In the aging process, the structure of PS-Al13 or PS-AlCl3 flocs and the functional groups on the surface of micro/nano plastics control the absorption and release of organic matter through hydrophobic, van der Waals forces, hydration, and polymer bridging. In the system with the addition of nano plastics, several DBPs such as TCAA, DCAA, TBM, DBCM and nitrosamines were reduced by more than 50%. The reaction order of different morphological structures and surface functional groups of microplastics to Al13 and AlCl3 systems is aromatic C-H > C-OH > C-O > NH2 > aromatic CC > aliphatic C-H and C-O>H-CO> NH2 >C-OH> aliphatic C-H. The results provided a new sight to explore the effect of micro/nano plastics on the release of NOM during flocs aging.

3.
eNeuro ; 11(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38346901

ABSTRACT

Human and animal imaging studies demonstrated that chronic pain profoundly alters the structure and the functionality of several brain regions and even causes mental dysfunctions such as depression and anxiety disorders. In this article, we conducted a multimodal study cross-sectionally and longitudinally, to evaluate how neuropathic pain affects the brain. Using the spared nerve injury (SNI) model which promotes long-lasting mechanical allodynia, results showed that neuropathic pain deeply modified the intrinsic organization of the brain functional network 2 weeks after injury. There are significant changes in the activity of the left thalamus (Th_L) and left olfactory bulb (OB_L) brain regions after SNI, as evidenced by both the blood oxygen level-dependent (BOLD) signal and c-Fos expression. Importantly, these changes were closely related to mechanical pain behavior of rats. However, it is worth noting that after morphine administration for analgesia, only the increased activity in the TH region is reversed, while the decreased activity in the OB region becomes more prominent. Functional connectivity (FC) and c-Fos correlation analysis further showed these two regions of interest (ROIs) exhibit different FC patterns with other brain regions. Our study comprehensively revealed the adaptive changes of brain neural networks induced by nerve injury in both cross-sectional and longitudinal dimensions and emphasized the abnormal activity and FC of Th_L and OB_L in the pathological condition. It provides reliable assistance in exploring the intricate mechanisms of diseases.


Subject(s)
Neuralgia , Humans , Rats , Animals , Rats, Sprague-Dawley , Cross-Sectional Studies , Brain/metabolism , Hyperalgesia , Disease Models, Animal
4.
Sci Total Environ ; 912: 169294, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38110093

ABSTRACT

Landfill leachate is a seriously polluted and hazardous liquid, which contains a high concentration of refractory organics, ammonia nitrogen, heavy metals, inorganic salts, and various suspended solids. The favorable disposal of landfill leachate has always been a hot and challenging issue in wastewater treatment. As one of the best available technologies for landfill leachate disposal, coagulation has been studied extensively. However, there is an absence of a systematic review regarding coagulation in landfill leachate treatment. In this paper, a review focusing on the characteristics, mechanisms, and application of coagulation in landfill leachate treatment was provided. Different coagulants and factors influencing the coagulation effect were synthetically summarized. The performance of coagulation coupled with other processes and their complementary advantages were elucidated. Additionally, the economic analysis conducted in this study suggests the cost-effectiveness of the coagulation process. Based on previous studies, challenges and perspectives met by landfill leachate coagulation treatment were also put forward. Overall, this review will provide a reference for the coagulation treatment of landfill leachate and promote the development of efficient and eco-friendly leachate treatment technology.

SELECTION OF CITATIONS
SEARCH DETAIL