Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Front Pharmacol ; 15: 1348076, 2024.
Article in English | MEDLINE | ID: mdl-38572428

ABSTRACT

Cancer stands as a prominent global cause of death. One of the key reasons why clinical tumor chemotherapy fails is multidrug resistance (MDR). In recent decades, accumulated studies have shown how Natural Product-Derived Compounds can reverse tumor MDR. Discovering novel potential modulators to reduce tumor MDR by Natural Product-Derived Compounds has become a popular research area across the globe. Numerous studies mainly focus on natural products including flavonoids, alkaloids, terpenoids, polyphenols and coumarins for their MDR modulatory activity. Natural products reverse MDR by regulating signaling pathways or the relevant expressed protein or gene. Here we perform a deep review of the previous achievements, recent advances in the development of natural products as a treatment for MDR. This review aims to provide some insights for the study of multidrug resistance of natural products.

2.
Sci Rep ; 14(1): 6566, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38503940

ABSTRACT

Four common Patrinia species, including P. heterophylla, P. monandra, P. scabiosifolia and P. villosa, have been documented as herbal medicines with various clinical applications, such as anti-cancer, anti-diarrhea and sedative. However, the authentication of medicinal Patrinia species poses a problem, particularly with the processed herbal materials. This study aimed to systematically authenticate the four medicinal Patrinia species in the market using morphological and chemical characterization, as well as DNA markers. We found the species identity authenticated by traditional morphologies were in good agreement with both chemical and molecular results. The four species showed species-specific patterns in chromatographic profiles with distinct chemical markers. We also revealed the power of complete chloroplast genomes in species authentication. The sequences of targeted loci, namely atpB, petA, rpl2-rpl23 and psaI-ycf4, contained informative nucleotides for the species differentiation. Our results also facilitate authentication of medicinal Patrinia species using new DNA barcoding markers. To the best of our knowledge, this is the first report on the application of morphology, chemical fingerprinting, complete chloroplast genomes and species-specific Insertion-Deletions (InDels) in differentiating Patrinia species. This study reported on the power of a systematic, multidisciplinary approach in authenticating medicinal Patrinia species.


Subject(s)
Patrinia , Plants, Medicinal , Patrinia/chemistry , Plants, Medicinal/genetics , Plants, Medicinal/chemistry
3.
Cancer Lett ; 582: 216590, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38097131

ABSTRACT

Cancer is considered as the second leading cause of mortality, and cancer incidence is still growing rapidly worldwide, which poses an increasing global health burden. Although chemotherapy is the most widely used treatment for cancer, its effectiveness is limited by drug resistance and severe side effects. Mitophagy is the principal mechanism that degrades damaged mitochondria via the autophagy/lysosome pathway to maintain mitochondrial homeostasis. Emerging evidence indicates that mitophagy plays crucial roles in tumorigenesis, particularly in cancer therapy. Mitophagy can exhibit dual effects in cancer, with both cancer-inhibiting or cancer-promoting function in a context-dependent manner. A variety of natural compounds have been found to affect cancer cell death and display anticancer properties by modulating mitophagy. In this review, we provide a systematic overview of mitophagy signaling pathways, and examine recent advances in the utilization of natural compounds for cancer therapy through the modulation of mitophagy. Furthermore, we address the inquiries and challenges associated with ongoing investigations concerning the application of natural compounds in cancer therapy based on mitophagy. Overcoming these limitations will provide opportunities to develop novel interventional strategies for cancer treatment.


Subject(s)
Mitophagy , Neoplasms , Humans , Autophagy , Cell Death , Mitochondria/metabolism , Mitophagy/physiology , Neoplasms/drug therapy , Neoplasms/metabolism
4.
Front Microbiol ; 14: 1253239, 2023.
Article in English | MEDLINE | ID: mdl-38116531

ABSTRACT

During the survey on freshwater hyphomycetes in Guangxi, Guizhou and Hainan Provinces, China, five fresh collections were encountered. Based on their morphology, these five isolates were identified as belonging to Hermatomyces, Kirschsteiniothelia, Paramonodictys, Pleopunctum and Sparticola. Multi-gene phylogenetic analyses were performed for each genus, which resulted in the identification of five new species, namely Hermatomyces hainanensis, Kirschsteiniothelia ramus, Paramonodictys globosa, Pleopunctum guizhouense, and Sparticola irregularis. Detailed descriptions and illustrations of the morphological characteristics of these new taxa were provided. This research enriches the biodiversity of freshwater dematiaceous hyphomycetes.

5.
Molecules ; 28(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37959870

ABSTRACT

Astragalus membranaceus is a traditional Chinese medicine derived from the roots of Astragalus membranaceus (Fisch.) Bge., which has the same medicinal and edible uses in China. It is also widely used in daily food, and its pharmacological effects mainly include antioxidant effects, vascular softening effects, etc. Currently, it is increasingly widely used in the prevention of hypertension, cerebral ischemia, and stroke in China. Formononetin and its glucopyranoside (ononin) are both important components of Astragalus membranaceuss and may play important roles in the treatment of cardiovascular diseases (CVDs). This study conducted metabolic studies using formononectin and its glucopyranoside (ononin), including a combination of the in vitro metabolism of Formonetin using rat liver S9 and the in vivo metabolism of ononin administered orally to rats. Five metabolites (Sm2, 7, 9, 10, and 12) were obtained from the solution incubated with formononetin and rat hepatic S9 fraction using chromatographic methods. The structures of the five metabolites were elucidated as (Sm2)6,7,4'-trihydroxy-isoflavonoid; (Sm7)7,4'-dihydroxy-isoflavonoid; (Sm9)7,8,4'-trihydroxy-isoflavonoid; (Sm10)7,8,-dihydroxy-4'-methoxy-isoflavonoid; and (Sm12)6,7-dihydroxy-4'-methoxy- isoflavonoid on the basis of UV, NMR, and MS data. Totally, 14 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis, from which the formononetin was incubated with rat hepatic S9 fraction, and the main metabolic pathways were hydroxylation, demethylation, and glycosylation. Then, 21 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis from the urine samples from SD rats to which ononin was orally administered, and the main metabolic pathways were glucuronidation, hydroxylation, demethylation, and sulfonation. The main difference between the in vitro metabolism of formononetin and the in vivo metabolism of ononin is that ononin undergoes deglycemic transformation into Formonetin in the rat intestine, while Formonetin is absorbed into the bloodstream for metabolism, and the metabolic products also produce combined metabolites during in vivo metabolism. The six metabolites obtained from the aforementioned separation indicate the primary forms of formononetin metabolism, and due to their higher contents of similar isoflavone metabolites, they are considered the main active compounds that are responsible for pharmacological effects. To investigate the metabolites of the active ingredients of formononetin in the rat liver S9 system, network pharmacology was used to evaluate the cardiovascular disease (CVD) activities of the six primary metabolites that were structurally identified. Additionally, the macromolecular docking results of six main components and two core targets (HSP90AA1 and SRC) related to CVD showed that formononetin and its main metabolites, Sm10 and Sm12, may have roles in CVD treatment due to their strong binding activities with the HSP90AA1 receptor, while the Sm7 metabolite may have a role in CVD treatment due to its strong binding activity with the SRC receptor.


Subject(s)
Cardiovascular Diseases , Drugs, Chinese Herbal , Isoflavones , Rats , Animals , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Network Pharmacology , Isoflavones/chemistry , Chromatography, High Pressure Liquid/methods , Liver/metabolism
6.
Int J Biol Macromol ; 247: 125843, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37460073

ABSTRACT

Ginseng is widely regarded as a panacea in Oriental medicine mainly due to its immunomodulatory activity. We previously found that sulfur fumigation, a commonly used pesticidal and anti-bacterial processing practice, weakened the immunomodulatory activity of ginseng. However, if and how sulfur fumigation affects the polysaccharides in ginseng, the crucial components contributing to the immunomodulatory function, remain unknown. Here we report that polysaccharides extracted from sulfur-fumigated ginseng (SGP) presented different chemical properties with polysaccharides extracted with non-fumigated ginseng (NGP), particularly increased water extraction yield and decreased branching degree. SGP had weaker immunomodulatory activity than NGP in immunocompromised mice, as evidenced by less improved immunophenotypes involving body weight, immune organ indexes, white blood cells, lymphocyte cell populations and inflammation. The different immunomodulatory activities were accompanied by changes in the interaction between the polysaccharides and gut microbiota, in which SGP stimulated the growth of different bacteria but produced less SCFAs as compared to NGP. Fecal microbiota transplantation experiment suggested that gut microbiota played a central role in causing the weakened immunomodulatory activity in vivo. This study provides definite evidence that sulfur fumigation affects the chemistry and bioactivity of ginseng polysaccharides, thereby contributing to understanding how sulfur fumigation weakens the immunomodulatory activity of ginseng.


Subject(s)
Panax , Mice , Animals , Panax/chemistry , Fumigation , Sulfur/chemistry , Polysaccharides/pharmacology , Plant Extracts
7.
ACS Omega ; 8(23): 21293-21304, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37332814

ABSTRACT

Dioscoreae Rhizoma (Chinese yam; derived from the rhizome of Dioscorea opposita Thunb.) (DR), commonly consumed as a food or supplement, is often sulfur-fumigated during post-harvest handling, but it remains largely unknown if and how sulfur fumigation impacts the chemistry of DR. In this study, we report the impact of sulfur fumigation on the chemical profile of DR and then the molecular and cellular mechanisms potentially involved in the chemical variations induced by sulfur fumigation. The results show that sulfur fumigation significantly and specifically changed the small metabolites (molecular weight lower than 1000 Da) and polysaccharides of DR at both qualitative and quantitative levels. Multifaceted molecular and cellular mechanisms involving chemical transformations (e.g., acidic hydrolysis, sulfonation, and esterification) and histological damage were found to be responsible for the chemical variations in sulfur-fumigated DR (S-DR). The research outcomes provide a chemical basis for further comprehensive and in-depth safety and functional evaluations of sulfur-fumigated DR.

8.
Autophagy ; 19(3): 1031-1033, 2023 03.
Article in English | MEDLINE | ID: mdl-35968729

ABSTRACT

Many anticancer agents exert cytotoxicity and trigger apoptosis through the induction of mitochondrial dysfunction. Mitophagy, as a key mitochondrial quality control mechanism, can remove damaged mitochondria in an effective and timely manner, which may result in drug resistance. Although the implication of mitophagy in neurodegenerative diseases has been extensively studied, the role and mechanism of mitophagy in tumorigenesis and cancer therapy are largely unknown. In a recent study, we found that the inhibition of PINK1-PRKN-mediated mitophagy can significantly enhance the anticancer efficacy of magnolol, a natural product with potential anticancer properties. On the one hand, magnolol can induce severe mitochondrial dysfunction, including mitochondrial depolarization, excessive mitochondrial fragmentation and the generation of mitochondrial ROS, leading to apoptosis. On the other hand, magnolol induces PINK1-PRKN-dependent mitophagy via activation of two rounds of feedforward amplification loops. The blockage of mitophagy through genetic or pharmacological approaches promotes rather than attenuates magnolol-induced cell death. Furthermore, inhibition of mitophagy by using distinct inhibitors targeting different mitophagic stages effectively enhances magnolol's anticancer efficacy in vivo. Taken together, our findings strongly indicate that manipulation of mitophagy in cancer treatment will be a promising therapeutic strategy for overcoming cancer drug resistance and improving the therapeutic efficacy of anticancer agents.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Mitophagy/genetics , Autophagy , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Apoptosis , Antineoplastic Agents/pharmacology
9.
J Agric Food Chem ; 70(39): 12577-12586, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36130944

ABSTRACT

We previously found that sulfur fumigation, a commonly used controversial method for the post-harvest handling of ginger, induces the generation of a compound in ginger, which was speculated to be a sulfur-containing derivative of 6-shogaol based on its mass data. However, the chemical and biological properties of the compound remain unknown. As a follow-up study, here we report the chemical structure, systemic exposure, and anticancer activity of the compound. Chromatographic separation, nuclear magnetic resonance analysis, and chemical synthesis structurally elucidated the compound as 6-gingesulfonic acid. Pharmacokinetics in rats found that 6-gingesulfonic acid was more slowly absorbed and eliminated, with more prototypes existing in the blood than 6-shogaol. Metabolism profiling indicated that the two compounds produced qualitatively and quantitatively different metabolites. It was further found that 6-gingesulfonic acid exerted significantly weaker antiproliferative activity on tumor cells than 6-shogaol. The data provide chemical and biological evidence that sulfur fumigation may impair the healthcare functions of ginger.


Subject(s)
Zingiber officinale , Animals , Catechols/chemistry , Follow-Up Studies , Fumigation , Zingiber officinale/chemistry , Guaiacol/analogs & derivatives , Rats , Sulfonic Acids , Sulfur
10.
Front Pharmacol ; 13: 920779, 2022.
Article in English | MEDLINE | ID: mdl-35770088

ABSTRACT

Cancer is a common and intractable disease that seriously affects quality of life of patients and imposes heavy economic burden on families and the entire society. Current medications and intervention strategies for cancer have respective shortcomings. In recent years, it has been increasingly spotlighted that chemokines and their receptors play vital roles in the pathophysiology of cancer. Chemokines are a class of structurally similar short-chain secreted proteins that initiate intracellular signaling pathways through the activation of corresponding G protein-coupled receptors and participate in physiological and pathological processes such as cell migration and proliferation. Studies have shown that chemokines and their receptors have close relationships with cancer epigenetic regulation, growth, progression, invasion, metastasis, and angiogenesis. Chemokines and their receptors may also serve as potential targets for cancer treatment. We herein summarize recent research progresses on anti-tumor effects and mechanisms of chemokines and their receptors, suggesting avenues for future studies. Perspectives for upcoming explorations, such as development of multi-targeted chemokine-based anti-tumor drugs, are also discussed in the present review.

11.
Food Funct ; 12(9): 3954-3964, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33977937

ABSTRACT

The therapeutic effects of water extract of ginseng (WEG) on exercise-induced fatigue (EF) have been reported in several previous studies, but the molecular mechanisms involved remain unexplored. In this study, the anti-EF effects of WEG were studied, and the potential mechanisms were discussed. We characterized the chemical components of WEG by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) and high performance liquid chromatography coupled with evaporative light scattering detection (HPLC-ELSD), and then examined the anti-EF effects of WEG on a rat model of weight-loaded swimming with a focus on endogenous metabolism and gut microbiota. WEG contains abundant (90.15%, w/w) saccharides and ginsenosides with structurally diverse glycosyls. WEG taken orally showed strong anti-EF effects by ameliorating energy metabolism abnormality, oxidative stress, lipid peroxidation, inflammatory response, disorders in the metabolism of bile acid, amino acid, fatty acid and lipid, as well as the gut microbiota dysbiosis. Given that gut microbiota is significantly associated with energy expenditure, systemic inflammation and host metabolism, these findings suggest a potential central role of the gut microbiota in mediating the anti-EF effect of WEG. That is, the saccharides and ginsenosides in WEG serve as energy substrates for specific intestinal bacteria, thereby beneficially regulating the gut microbiota, and the reshaped gut microbial ecosystem then triggers several molecular and cellular signaling pathways (e.g. butyrate or TGR5 signals) to achieve the therapeutic effects on EF. The outcomes highlighted here enable deeper insight into how WEG overcomes EF.


Subject(s)
Fatigue/drug therapy , Gastrointestinal Microbiome/drug effects , Panax , Physical Exertion , Plant Extracts/pharmacology , Amino Acids/metabolism , Animals , Bacteroidetes/classification , Bacteroidetes/growth & development , Bacteroidetes/isolation & purification , Bile Acids and Salts/metabolism , Dysbiosis , Fatigue/etiology , Fatty Acids/metabolism , Firmicutes/classification , Firmicutes/growth & development , Firmicutes/isolation & purification , Lipid Metabolism , Male , Metabolome , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Rats , Rats, Sprague-Dawley , Swimming
12.
Acta Pharm Sin B ; 11(12): 3966-3982, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35024319

ABSTRACT

Mitochondria as a signaling platform play crucial roles in deciding cell fate. Many classic anticancer agents are known to trigger cell death through induction of mitochondrial damage. Mitophagy, one selective autophagy, is the key mitochondrial quality control that effectively removes damaged mitochondria. However, the precise roles of mitophagy in tumorigenesis and anticancer agent treatment remain largely unclear. Here, we examined the functional implication of mitophagy in the anticancer properties of magnolol, a natural product isolated from herbal Magnolia officinalis. First, we found that magnolol induces mitochondrial depolarization, causes excessive mitochondrial fragmentation, and increases mitochondrial reactive oxygen species (mtROS). Second, magnolol induces PTEN-induced putative kinase protein 1 (PINK1)‒Parkin-mediated mitophagy through regulating two positive feedforward amplification loops. Third, magnolol triggers cancer cell death and inhibits neuroblastoma tumor growth via the intrinsic apoptosis pathway. Moreover, magnolol prolongs the survival time of tumor-bearing mice. Finally, inhibition of mitophagy by PINK1/Parkin knockdown or using inhibitors targeting different autophagy/mitophagy stages significantly promotes magnolol-induced cell death and enhances magnolol's anticancer efficacy, both in vitro and in vivo. Altogether, our study demonstrates that magnolol can induce autophagy/mitophagy and apoptosis, whereas blockage of autophagy/mitophagy remarkably enhances the anticancer efficacy of magnolol, suggesting that targeting mitophagy may be a promising strategy to overcome chemoresistance and improve anticancer therapy.

13.
Acta Pharmacol Sin ; 42(8): 1212-1222, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33154553

ABSTRACT

Herbs and dietary supplement-induced liver injury (HILI) is the leading cause of drug-induced liver injury in China. Among different hepatotoxic herbs, the pyrrolizidine alkaloid (PA)-producing herb Gynura japonica contributes significantly to HILI by inducing hepatic sinusoidal obstruction syndrome (HSOS), a liver disorder characterized by hepatomegaly, hyperbilirubinemia, and ascites. In China, G. japonica has been used as one of the plant species for Tu-San-Qi and is often misused with non-PA-producing Tu-San-Qi (Sedum aizoon) or even San-Qi (Panax notoginseng) for self-medication. It has been reported that over 50% of HSOS cases are caused by the intake of PA-producing G. japonica. In this review, we provide comprehensive information to distinguish these Tu-San-Qi-related herbal plant species in terms of plant/medicinal part morphologies, medicinal indications, and chemical profiles. Approximately 2156 Tu-San-Qi-associated HSOS cases reported in China from 1980 to 2019 are systematically reviewed in terms of their clinical manifestation, diagnostic workups, therapeutic interventions, and outcomes. In addition, based on the application of our developed mechanism-based biomarker of PA exposure, our clinical findings on the definitive diagnosis of 58 PA-producing Tu-San-Qi-induced HSOS patients are also elaborated. Therefore, this review article provides the first comprehensive report on 2214 PA-producing Tu-San-Qi (G. japonica)-induced HSOS cases in China, and the information presented will improve public awareness of the significant incidence of PA-producing Tu-San-Qi (G. japonica)-induced HSOS and facilitate future prevention and better clinical management of this severe HILI.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Drugs, Chinese Herbal/poisoning , Pyrrolizidine Alkaloids/poisoning , Asteraceae/chemistry , Biomarkers/blood , Chemical and Drug Induced Liver Injury, Chronic/blood , Chemical and Drug Induced Liver Injury, Chronic/diagnosis , China , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Humans , Panax notoginseng/chemistry , Pyrrolizidine Alkaloids/chemistry , Pyrrolizidine Alkaloids/metabolism , Sedum/chemistry
14.
Chin Med ; 15: 46, 2020.
Article in English | MEDLINE | ID: mdl-32426031

ABSTRACT

BACKGROUND: Dendrobii Officinalis Caulis (DC) is a well-known tonic herbal medicine worldwide and has favorable immunomodulatory activity. Various material specifications of DC are available in herbal markets, and DC is ingested by different edible methods. However, whether these specifications and edible methods are suitable or not remains unknown. METHODS: In this study, we evaluated the suitability of four material specifications (fresh stem, dried stem, fengdou and powder) and three edible methods (making tea, soup and medicinal liquor) based on holistic polysaccharide marker (HPM), the major polysaccharide components in DC. First, the HPMs were extracted from the four specifications of DC by the three edible methods in different conditions. Second, qualitative and quantitative characterization of the extracted HPMs was performed using high performance gel permeation chromatography (HPGPC). Third, immunomodulatory activities of the extracted HPMs were evaluated in vivo. RESULTS: The results showed that the HPMs were found to be quantitatively different from various specification of DC and edible methods. In vivo analysis indicated that the HPMs exerted positive effects on innate immune responses by increment in proliferation of splenocytes, secretion of IL-2 and cytotoxicity activity of NK cells. Moreover, the dosage amount of HPM should be defined as a certain range, but not the larger the better, for exerting strong immunological activities. CONCLUSION: According to the both chemical and biological results, fengdou by boiling with water for 4 h is the most recommended specification and edible method for DC.

15.
Front Oncol ; 10: 472, 2020.
Article in English | MEDLINE | ID: mdl-32318350

ABSTRACT

Exosomes affect the initiation and progression of cancers. In the tumor microenvironment, not only cancer cells, but also fibroblasts and immunocytes secrete exosomes. Exosomes act as a communicator between cells by transferring different cargos and microRNAs (miRNAs). Drug resistance is one of the critical factors affecting therapeutic effect in the course of cancer treatment. The currently known mechanisms of drug resistance include drug efflux, alterations in drug metabolism, DNA damage repair, alterations of energy programming, cancer stem cells and epigenetic changes. Many studies have shown that miRNA carried by exosomes is closely associated with the development of drug resistance mediated by the above-mentioned mechanisms. This review article will discuss how exosomal miRNAs regulate the drug resistance.

16.
Phytomedicine ; 74: 152761, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31005370

ABSTRACT

BACKGROUND: Ginseng has therapeutic potential for treating obesity and the associated gut microbiota dysbiosis. However, whether white ginseng and red ginseng, the two kinds of commonly used processed ginseng, possess different anti-obesity effects remains unknown. PURPOSE: Anti-obesity effects of water extracts of white ginseng and red ginseng (WEWG and WERG) were compared, and the potential mechanisms were discussed. METHODS: Chemical profiles of WEWG and WERG were characterized by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) and high performance liquid chromatography coupled with evaporative light scattering detector (HPLC-ELSD). Anti-obesity effects of WEWG/WERG were examined by determining fat accumulation, systemic inflammation, enteric metabolic disorders and gut microbiota dysbiosis in high-fat diet (HFD)-fed obese mice. RESULTS: Both WEWG and WERG exerted anti-obesity effects, with WEWG stronger than WERG. Compared to WERG, WEWG contained less contents of carbohydrates (polysaccharides, oligosaccharides, free monosaccharides) and ginsenosides, but chemical structures or compositions of these components in WEWG were characteristic, i.e. narrower molecular weight distribution and higher molar ratios of glucose residues of polysaccharides; higher content ratios of oligosaccharides DP2-3 (di-/tri-saccharides)-to-oligosaccharides DP4-7 (tetra-/penta-/hexa-/hepta-saccharides), sucrose-to-melibiose, maltose-to-trehalose and high-polar-to-low-polar ginsenosides. WEWG better ameliorated fat accumulation, enteric metabolic disorders and gut microbiota dysbiosis in HFD-fed obese mice than WERG. CONCLUSION: The stronger anti-obesity effect of white ginseng appears to correlate with differences in its chemical profile as compared to red ginseng. The carbohydrates and ginsenosides in WEWG potentially present more structural and compositional specificity to the obesity-associated gut bacteria, allowing more beneficial effects of WEWG on the gut microbiota dysbiosis. This consequently better alleviates the enteric metabolic disorders and systemic inflammation, thereby contributing to the stronger anti-obesity effect of WEWG as compared to WERG.


Subject(s)
Anti-Obesity Agents/pharmacology , Dysbiosis/drug therapy , Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Panax/chemistry , Animals , Anti-Obesity Agents/chemistry , Carbohydrates/analysis , Chromatography, High Pressure Liquid , Diet, High-Fat/adverse effects , Dysbiosis/microbiology , Gastrointestinal Microbiome/physiology , Ginsenosides/analysis , Male , Mice, Inbred BALB C , Obesity/microbiology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polysaccharides/analysis , Species Specificity , Tandem Mass Spectrometry
17.
J Food Drug Anal ; 27(3): 766-777, 2019 07.
Article in English | MEDLINE | ID: mdl-31324292

ABSTRACT

Many Chinese medicinal materials (CMMs) are parts of plants or fungi that have been processed into different physical forms, termed decoction pieces, that are typically boiled in water for consumption. One CMM may have several decoction pieces forms, e.g., slices, small cubes (dice), or grains. The specifications that have different morphological parameters (shape, size and thickness) for these various decoction pieces have been developed over, in some cases, centuries of practice. Nevertheless, whether and how the form of decoction pieces affects the extraction (decoction) dynamics, and quality stability during storage has not been studied. Here, we investigated Poria cocos (PC) as a pilot study; we explore how the form of PC decoction pieces affects its chemistry using multidimensional chemical evaluation such as ultra-performance liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry (UHPLC-PDA-QTOF-MS/MS), ultra-performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) and high performance gel permeation chromatography coupled with charged aerosol detector (HPGPC-CAD), combined with analysis of variance (ANOVA), principal component analysis (PCA), factor analysis (FA) and hierarchical cluster analysis (HCA). The results indicated that different specifications had significant differences, and these specifications could be divided into four groups. The comprehensive results of the chemical analyses undertaken here indicate that the highest potentially available quality of PC decoction pieces was in the forms of curl, ultra-small grains and small grains, followed by thin slices. This information not only is conducive to promoting the standardization of the specification/form of PC decoction pieces and maximizing the benefits from its utilization, but also provide a promising strategy for assessing other CMM decoction pieces in different forms.


Subject(s)
Drugs, Chinese Herbal/analysis , Wolfiporia/chemistry , Medicine, Chinese Traditional , Pilot Projects
18.
Front Pharmacol ; 10: 746, 2019.
Article in English | MEDLINE | ID: mdl-31354475

ABSTRACT

As a quinonemethide triterpenoid extracted from species of the Celastraceae and Hippocrateaceae, pristimerin has been shown potent anti-cancer effects. Specifically, it was found that pristimerin can affect many tumor-related processes, such as apoptosis, autophagy, migration and invasion, vasculogenesis, and drug resistance. Various molecular targets or signaling pathways are also involved, such as cyclins, reactive oxygen species (ROS), microRNA, nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways. In this review, we will focus on the research about pristimerin-induced anti-cancer activities to achieve a deeper understanding of the targets and mechanisms, which offer evidences suggesting that pristimerin can be a potent anti-cancer drug.

19.
J Agric Food Chem ; 67(26): 7304-7314, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31180668

ABSTRACT

Morindae Officinalis Radix (MOR), the dried root of Morinda officinalis F.C. How (Rubiaceae), is a popular food supplement in southeastern China for bone protection, andrological, and gynecological healthcare. In clinical use, 3-4 year old MOR is commonly used and the xylem is sometimes removed. However, there is no scientific rationale for these practices so far. In this study, metabolomics and glycomics were integrated using multiple chromatographic and mass spectrometric techniques coupled with multivariate statistical analysis to investigate the qualitative and quantitative variations of secondary metabolome and glycome in different growth years (1-7 years) and tissues (xylem and cortex) of MOR. The results showed that various types of bioactive components reached a maximum between 3 and 4 years of growth and that the xylem contained more potentially toxic constituents but less bioactive components than the cortex. This study provides the chemical basis for the common practice of using 3-4 year old MOR with the xylem removed.


Subject(s)
Drugs, Chinese Herbal/chemistry , Morinda/growth & development , Plant Roots/chemistry , China , Drugs, Chinese Herbal/metabolism , Glycomics , Metabolomics , Morinda/chemistry , Morinda/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Time Factors , Xylem/chemistry , Xylem/metabolism
20.
J Hazard Mater ; 364: 376-387, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30384248

ABSTRACT

Sulfur dioxide (SO2) is a hazardous residue in sulfur-fumigated herbs. Standards limiting SO2 content have been adopted worldwide for quality control of sulfur-fumigated herbs, and herbs with less SO2 are believed to be better. However, the standards are based only on the safe dose of SO2 and may not characterize changes in herbal quality, thereby the efficacy and toxicity, resulting from sulfur fumigation. To confirm this, here the correlation of residual SO2 content with the quality/efficacy/toxicity of sulfur-fumigated herb was investigated, and ginseng was selected as a pilot study object. Four sulfur-fumigated ginseng samples with different SO2 contents were systemically compared regarding their quality, anti-inflammatory, anti-shock and anti-stress efficacies, as well as acute and chronic toxicities. The results demonstrated that the SO2 content did not correlate with the quality, efficacy and toxicity changes of ginseng; more specifically, less SO2 residue did not indicate higher quality, better efficacy nor weaker toxicity. This fact suggests that SO2 content cannot characterize the variations in quality, efficacy and toxicity of sulfur-fumigated herbs. Therefore, the standard limiting SO2 content alone may be inadequate for quality control of sulfur-fumigated herbs, and new standards including other indicators that can exactly reflect herbal efficacy and safety are necessary.


Subject(s)
Anti-Anxiety Agents , Anti-Inflammatory Agents , Antioxidants , Fumigation , Panax , Plant Extracts , Sulfur Dioxide/analysis , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/toxicity , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/toxicity , Antioxidants/pharmacology , Antioxidants/toxicity , Cell Line , Female , Food Safety , Hypoxia/drug therapy , Male , Mice , Oxidative Stress/drug effects , Pilot Projects , Plant Extracts/pharmacology , Plant Extracts/toxicity , Quality Control , Rats, Sprague-Dawley , Shock, Hemorrhagic/drug therapy , Stress, Psychological/drug therapy , Sulfur
SELECTION OF CITATIONS
SEARCH DETAIL
...