Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 14(7)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063659

ABSTRACT

Diastolic dysfunction, a prevalent condition characterized by impaired relaxation and filling of the left ventricle, significantly contributes to heart failure with preserved ejection fraction (HFpEF). Galectin-3, a ß-galactoside-binding lectin, has garnered attention as a potential biomarker and mediator of fibrosis and inflammation in cardiovascular diseases. This comprehensive review investigates the impact of galectin-3 on diastolic dysfunction. We explore its molecular mechanisms, including its involvement in cellular signaling pathways and interaction with components of the extracellular matrix. Evidence from both animal models and clinical studies elucidates galectin-3's role in cardiac remodeling, inflammation, and fibrosis, shedding light on the underlying pathophysiology of diastolic dysfunction. Additionally, we examine the diagnostic and therapeutic implications of galectin-3 in diastolic dysfunction, emphasizing its potential as both a biomarker and a therapeutic target. This review underscores the significance of comprehending galectin-3's role in diastolic dysfunction and its promise in enhancing diagnosis and treatment approaches for HFpEF patients.

2.
Article in English | MEDLINE | ID: mdl-39034165

ABSTRACT

BACKGROUND: The adverse effects of sepsis-associated acute kidney injury (SA-AKI) highlight the need for new biomarkers. Signal Peptide-Complement C1r/C1s, Uegf, Bmp1-Epidermal Growth Factor-like Domain-Containing Protein 2 (SCUBE2), important for angiogenesis and endothelial integrity, has been linked to increased mortality in models of lipopolysaccharide-induced lung injury. This research aimed to assess the utility of plasma SCUBE2 levels as a prognostic indicator for SA-AKI in intensive care unit (ICU) patients. METHODS: Between September 2020 and December 2022, our study enrolled ICU patients diagnosed with stage 3 SA-AKI. We collected demographic information, illness severity indices, and laboratory data, including plasma SCUBE2 and sepsis-triggered cytokine levels. We employed receiver operating characteristic curves and DeLong tests to assess the predictive accuracy for survival, Kaplan-Meier curves to evaluate the relative risk of death, and multivariate logistic regression to identify independent mortality predictors. RESULTS: Among the total of 200 participants, the survivors had significantly higher plasma SCUBE2 levels (115.9 ng/mL) compared to those who died (35.6 ng/mL). SCUBE2 levels showed a positive correlation with the anti-inflammatory cytokine IL-10 and a negative correlation with the APACHE II score, SOFA score, C-reactive protein, and monocyte chemoattractant protein-1. Multivariate analysis revealed that elevated SCUBE2 and IL-10 levels were independently protective against mortality, and associated with the most favorable 30-day survival outcomes. CONCLUSIONS: In ICU patients with stage 3 SA-AKI, lower plasma levels of SCUBE2 were correlated with elevated pro-inflammatory factors, which impacted survival outcomes. This suggests that SCUBE2 could be a potential biomarker for predicting prognosis in patients with SA-AKI.

3.
Medicina (Kaunas) ; 60(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38929484

ABSTRACT

Cafestol, a bioactive compound found in coffee, has attracted considerable attention due to its potential impact on cardiovascular health. This review aims to comprehensively explore the association between cafestol and cardiovascular diseases. We delve into the mechanisms through which cafestol influences lipid metabolism, inflammation, and endothelial function, all of which are pivotal in cardiovascular pathophysiology. Moreover, we meticulously analyze epidemiological studies and clinical trials to elucidate the relationship between cafestol and cardiovascular outcomes. Through a critical examination of existing literature, we aim to provide insights into the potential benefits and risks associated with cafestol concerning cardiovascular health.


Subject(s)
Cardiovascular Diseases , Humans , Coffee , Lipid Metabolism/drug effects
4.
mSphere ; 8(6): e0040023, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38014949

ABSTRACT

IMPORTANCE: Elizabethkingia anophelis, a Gram-negative pathogen, causes infections such as bacteraemia, pneumonia, and neonatal meningitis. The pathogen resists most antimicrobial classes, making novel approaches urgently needed. In natural settings, Gram-negative bacteria secrete outer membrane vesicles (OMVs) that carry important molecules in the bacterial life cycle. These OMVs are enriched with proteins involved in virulence, survival, and carbohydrate metabolism, making them a promising source for vaccine development against the pathogen. This study investigated the efficacy of imipenem-induced OMVs (iOMVs) as a vaccine candidate against E. anophelis infection in a mouse pneumonia model. Mice immunized with iOMVs were completely protected during lethal-dose challenges. Passive immunization with hyperimmune sera and splenocytes conferred protection against lethal pneumonia. Further investigation is needed to understand the mechanisms underlying the protective effects of iOMV-induced passive immunity, such as the action on specific antibody subclasses or T cell subsets.


Subject(s)
Flavobacteriaceae , Pneumonia , Animals , Mice , Immunity , Bacterial Vaccines
5.
Neurobiol Stress ; 27: 100569, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37771408

ABSTRACT

Posttraumatic stress disorder (PTSD) is a complex disorder that involves physiological, emotional, and cognitive dysregulation that may occur after exposure to a life-threatening event. In contrast with the condition of learned fear with resilience to extinction, abnormal fear with impaired fear extinction and exaggeration are considered crucial factors for the pathological development of PTSD. The prefrontal cortex (mPFC) is considered a critical region of top-down control in fear regulation, which involves the modulation of fear expression and extinction. The pathological course of PTSD is usually chronic and persistent; a number of studies have indicated temporal progression in gene expression and phenotypes may be involved in PTSD pathology. In the current study, we use a well-established modified single-prolonged stress (SPS&FS) rat model to feature PTSD-like phenotypes and compared it with a footshock fear conditioning model (FS model); we collected the frontal tissue after extreme stress exposure or fear conditioning and extracted RNA for transcriptome-level gene sequencing. We compared the genetic profiling of the mPFC at early (<2 h after solely FS or SPS&FS exposure) and late (7 days after solely FS or SPS&FS exposure) stages in these two models. First, we identified temporal differences in the expressional patterns between these two models and found pathways such as protein synthesis factor eukaryotic initiation factor 2 (EIF2), transcription factor NF-E2-related factor 2 (NRF2)-mediated oxidative stress response, and acute phase responding signaling enriched in the early stage in both models with significant p-values. Furthermore, in the late stage, the sirtuin signaling pathway was enriched in both models; other pathways such as STAT3, cAMP, lipid metabolism, Gα signaling, and increased fear were especially enriched in the late stage of the SPS&FS model. However, pathways such as VDR/RXR, GP6, and PPAR signaling were activated significantly in the FS model's late stage. Last, the network analysis revealed the temporal dynamics of psychological disorder, the endocrine system, and also genes related to increased fear in the two models. This study could help elucidate the genetic temporal alteration and stage-specific pathways in these two models, as well as a better understanding of the transcriptome-level differences between them.

6.
Neurobiol Stress ; 26: 100554, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37576348

ABSTRACT

Posttraumatic stress disorder (PTSD) is a complex syndrome that may occur after life-threatening events. Fear memory abnormalities may play vital roles in the pathogenesis of PTSD. Previous work has found that fear memories are not rigid; the retrieval of fear memories may change over time. Furthermore, prior studies suggest that theta wave (4 Hz) activity is highly correlated with fear expression in an animal model. However, the relationship between pathological fear memory and potential brain wave features in PTSD remains largely uncharacterized. Here, we hypothesized that after traumatic stress exposure, the longitudinal dynamics of abnormal fears in PTSD animal models could be reflected by the measurement of local field potentials (LFPs). Using a well-established modified single-prolonged stress and footshock (SPS & FS) PTSD rat model, animals were restrained for 2 h and subsequently subjected to 20 min of forced swimming, then exposed to diethyl ether until they lost consciousness and placed in a conditioning chamber for fear conditioning. To characterize the temporal changes, we characterized freezing behavior brain wave features during the conditioning chamber re-exposure in the early (10 and 30 min; 2, 4, and 6 h) and late (day 1, 3, 7, and 14) phases after traumatic stress exposure. Our results indicate that SPS & FS rats showed co-morbid PTSD phenotypes including significantly higher levels of anxiety-, depression-, and anhedonia-like behaviors, and impaired fear extinction. Delta wave (0.5-4 Hz) suppression in the medial prefrontal cortex, amygdala, and ventral hippocampus occurred 10 and 30 min after traumatic stress, followed by continuous delta wave activity from 2 h to day 14, correlating with fear levels. tDCS reduced delta activity and alleviated PTSD-like phenotypes in the SPS & FS group. In this study, profiling abnormal fears with brain wave correlates may improve our understanding of time-dependent pathological fear memory retrieval in PTSD and facilitate the development of effective intervention strategies.

7.
J Vis Exp ; (193)2023 03 17.
Article in English | MEDLINE | ID: mdl-37010300

ABSTRACT

Intracellular vesicles (IVs) are formed through endocytosis of vesicles into cytoplasm. IV formation is involved in activating various signal pathways through permeabilization of IV membranes and the formation of endosomes and lysosomes. A method named chromophore-assisted laser inactivation (CALI) is applied to study the formation of IVs and the materials in controlling IV regulation. CALI is an imaging-based photodynamic methodology to study the signaling pathway induced by membrane permeabilization. The method allows spatiotemporal manipulation of the selected organelle to be permeabilized in a cell. The CALI method has been applied to observe and monitor specific molecules through the permeabilization of endosomes and lysosomes. The membrane rupture of IVs is known to selectively recruit glycan-binding proteins, such as galectin-3. Here, the protocol describes the induction of IV rupture by AlPcS2a and the use of galectin-3 as a marker to label impaired lysosomes, which is useful in studying the downstream effects of IV membrane rupture and their downstream effects under various situations.


Subject(s)
Endosomes , Galectin 3 , Galectin 3/metabolism , Endosomes/metabolism , Endocytosis/physiology , Lysosomes/metabolism , Signal Transduction , Intracellular Membranes/metabolism
8.
Acta Derm Venereol ; 103: adv00875, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36852577

ABSTRACT

Chronic pruritus is an unpleasant sensory perception that negatively affects quality of life and is common among patients with type 2 diabetes mellitus. Current antipruritic therapies are insufficiently effective. Thus, the mediation of diabetic pruritus by histamine-independent pathways is likely. The aim of this study was to identify possible mediators responsible for diabetic pruritus. A total of 87 patients with type 2 diabetes mellitus were analysed, of whom 59 had pruritus and 28 did not. The 2 groups were assessed for baseline demographics, serum biochemistry parameters, cytokines, and chemokines. This study also investigated the associations of these factors with the severity of itching. Neither haemoglobin A1c nor serum creatinine levels were correlated with severity of itching. Significantly higher levels of interleukin-4 (p = 0.004), interleukin-13 (p = 0.006), granulocyte-macrophage colony-stimulating factor (p < 0.001) and C-X-C motif chemokine ligand 10 (p = 0.028) were observed in the patients with pruritus than in those without pruritus. Moreover, the levels of these mediators were positively correlated with the severity of itching. Thus, novel antipruritic drugs can be developed to target these molecules. This is the first study to compare inflammatory mediators comprehensively in patients with diabetes mellitus with pruritus vs those without pruritus.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Quality of Life , Pruritus/diagnosis , Pruritus/drug therapy , Pruritus/etiology , Antipruritics , Cytokines
9.
Cells ; 11(21)2022 10 24.
Article in English | MEDLINE | ID: mdl-36359746

ABSTRACT

INTRODUCTION: Several environmental stimuli may influence lupus, particularly viral infections. In this study, we used an imiquimod-induced lupus mouse model focused on the TLR7 pathway and proteomics analysis to determine the specific pathway related to viral infection and the related protein expressions in splenic B cells to obtain insight into B-cell responses to viral infection in the lupus model. MATERIALS AND METHODS: We treated FVB/N wild-type mice with imiquimod for 8 weeks to induce lupus symptoms and signs, retrieved splenocytes, selected B cells, and conducted the proteomic analysis. The B cells were co-cultured with CD40L+ feeder cells for another week before performing Western blot analysis. Panther pathway analysis was used to disclose the pathways activated and the protein-protein interactome was analyzed by the STRING database in this lupus murine model. RESULTS: The lupus model was well established and well demonstrated with serology evidence and pathology proof of lupus-mimicking organ damage. Proteomics data of splenic B cells revealed that the most important activated pathways (fold enrichment > 100) demonstrated positive regulation of the MDA5 signaling pathway, negative regulation of IP-10 production, negative regulation of chemokine (C-X-C motif) ligand 2 production, and positive regulation of the RIG-I signaling pathway. A unique protein-protein interactome containing 10 genes was discovered, within which ISG15, IFIH1, IFIT1, DDX60, and DHX58 were demonstrated to be downstream effectors of MDA5 signaling. Finally, we found B-cell intracellular cytosolic proteins via Western blot experiment and continued to observe MDA5-related pathway activation. CONCLUSION: In this experiment, we confirmed that the B cells in the lupus murine model focusing on the TLR7 pathway were activated through the MDA5 signaling pathway, an important RNA sensor implicated in the detection of viral infections and autoimmunity. The MDA5 agonist/antagonist RNAs and the detailed molecular interactions within B cells are worthy of further investigation for lupus therapy.


Subject(s)
Interferon-Induced Helicase, IFIH1 , Virus Diseases , Animals , Mice , DEAD-box RNA Helicases/metabolism , Disease Models, Animal , Imiquimod/pharmacology , Proteomics , Signal Transduction , Toll-Like Receptor 7 , Virus Diseases/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Lupus Erythematosus, Systemic/chemically induced
10.
BMC Complement Med Ther ; 22(1): 211, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35933374

ABSTRACT

BACKGROUND: Intestinal inflammation is considered to be an important characteristic of ulcerative colitis (UC) and the current medical treatments for UC are usually proposed to suppress abnormal intestinal immune responses. Pulsatilla decoction (PD), a traditional Chinese medicine, is frequently used in UC treatments in Asian countries; however, the mechanism of the action of PD remains unclear. In the present study, the mechanism of the action of PD was elucidated in the dextran sulfate sodium (DSS)-induced colitis mouse model, a model to mimic UC. METHODS: Murine colitis was evaluated by comparing the disease activity index score. The intestinal inflammation was examined by histology analyses. The leukocyte infiltration in the colonic tissues was examined by immunohistochemistry analyses. The cytokines level in colonic tissues was examined by Multi-Plex immunoassay. The epithelial proliferation was evaluated by histological analyses. Immunofluorescence double staining was used to examine the expression of MMP-7 in the immune cells. RESULTS: In the DSS-induced colitis mouse model, administration of PD attenuated the intestinal inflammation, with a marked decrease in colonic infiltration of innate immune cells. Immunohistochemical analyses further showed that matrix metalloproteinase-7 (MMP-7) expressed by the infiltrating leukocytes, including neutrophils and macrophages was inhibited by PD treatment. PD increases the cytokine level of IL-6 in colonic tissues. CONCLUSION: PD suppresses intestinal inflammation, with a marked decrease in colonic infiltration of innate immune cells, through decreasing MMP-7 expression.


Subject(s)
Colitis, Ulcerative , Colitis , Pulsatilla , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Cytokines/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Inflammation , Leukocytes , Matrix Metalloproteinase 7 , Mice , Pulsatilla/metabolism
11.
Glycobiology ; 32(9): 760-777, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35789267

ABSTRACT

Galectin-3 (GAL3) is a ß-galactoside-binding lectin expressed in CD4 T cells infected with human immunodeficiency virus-1 (HIV-1). GAL3 promotes HIV-1 budding by associating with ALIX and Gag p6. GAL3 has been shown to localize in membrane lipid rafts in dendritic cells and positively regulate cell migration. HIV-1 spreads between T cells by forming supramolecular structures (virological synapses [VSs]), whose integrity depends on lipid rafts. Here, we addressed the potential role of GAL3 in cell-to-cell transmission of HIV-1 in CD4 T cells. GAL3 expressed in donor cells was more important for facilitating HIV-1 cell-to-cell transfer than GAL3 expressed in target cells. GAL3 was found to be co-transferred with Gag from HIV-1-positive donor to HIV-1-negative target T cells. HIV-1 infection induced translocation of GAL3 together with Gag to the cell-cell interfaces and colocalize with GM1, where GAL3 facilitated VS formation. GAL3 regulated the coordinated transfer of Gag and flotillin-1 into plasma membrane fractions. Finally, depletion of GAL3 reduced the cholesterol levels in membrane lipid rafts in CD4 T cells. These findings provide evidence that endogenous GAL3 stimulates lipid raft components and facilitates intercellular HIV-1 transfer among CD4 T cells, offering another pathway by which GAL3 regulates HIV-1 infection. These findings may inform the treatment of HIV-1 infection based on targeting GAL3 to modulate lipid rafts.


Subject(s)
HIV Infections , HIV-1 , Blood Proteins , CD4-Positive T-Lymphocytes/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Galectins , Humans , Membrane Lipids/analysis , Membrane Lipids/metabolism , Membrane Microdomains/chemistry
12.
Biomedicines ; 10(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35327386

ABSTRACT

Plasma galectin-3 (Gal-3) is associated with organ fibrosis, but whether urinary Gal-3 is a potential biomarker of kidney disease progression has never been explored. Between 2018 and 2021, we prospectively enrolled 280 patients who underwent renal biopsy and were divided into three groups based on their urinary Gal-3 levels (<354.6, 354.6−510.7, and ≥510.8 pg/mL) to assess kidney disease progression (defined as ≥40% decline in the estimated glomerular filtration rate or end-stage renal disease) and renal histology findings. Patients in the highest urinary Gal-3 tertile had the lowest eGFRs and highest proteinuria levels. In multivariate Cox regression models, patients in the highest tertile had the highest risk of kidney disease progression (adjusted hazard ratio, 4.60; 95% confidence interval, 2.85−7.71) compared to those in the lowest tertile. Higher urinary Gal-3 levels were associated with more severe renal fibrosis. Intrarenal mRNA expression of LGALS3 (Gal-3-encoded gene) was most correlated with the renal stress biomarkers (IGFBP7 and TIMB2), renal function biomarkers (PTGDS) and fibrosis-associated genes (TGFB1). The urinary Gal-3 level may be useful for the identification of patients at high risk of kidney disease progression and renal fibrosis, and for the early initiation of treatments for these patients.

13.
Front Med (Lausanne) ; 8: 748225, 2021.
Article in English | MEDLINE | ID: mdl-34869439

ABSTRACT

Background: Galectin-3 (Gal-3) is a multifunctional glycan-binding protein shown to be linked to chronic inflammation and fibrogenesis. Plasma Gal-3 is associated with proteinuria and renal dysfunction, but its role has never been confirmed with kidney biopsy results. In our study, we aimed to explore the expression of Gal-3 in biopsy-proven patients, and we tested the hypothesis that chronic kidney disease (CKD) leads to upregulation of plasma Gal-3 expression in corresponding biopsy findings and RNA sequencing analysis. Method: In 249 patients (male/female: 155/94, age: 57.2 ± 16.3 years) who underwent kidney biopsy, plasma levels of Gal-3 were measured to estimate the association of renal fibrosis. Relationships between plasma Gal-3 levels, estimated glomerular filtration rate (eGFR) and renal histology findings were also assessed. We further examined the gene expression of Gal-3 in RNA-sequencing analysis in biopsy-proven patients. Results: Compared to patients without CKD, CKD patients had higher levels of plasma Gal-3 (1,016.3 ± 628.1 pg/mL vs. 811.6 ± 369.6 pg/ml; P = 0.010). Plasma Gal-3 was inversely correlated with eGFR (P = 0.005) but not with proteinuria. Higher Gal-3 levels were associated with interstitial fibrosis, tubular atrophy and vascular intimal fibrosis. RNA-sequencing analysis showed the upregulation of Gal-3 in fibrotic kidney biopsy samples, and the differentially expressed genes were mainly enhanced in immune cell activation and the regulation of cell-cell adhesion. Conclusions: Plasma Gal-3 levels are inverse correlated with eGFR but positively correlated with renal fibrosis, which may be involved in the immune response and associated pathways. These findings support the role of Gal-3 as a predictive marker of renal fibrosis.

14.
Nutrients ; 13(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34444962

ABSTRACT

Galectin-3 reportedly participates in the inflammatory process that causes insulin resistance in the target tissues. However, the role of high plasma galectin-3 levels as an indicator of protein-energy wasting (PEW) in patients undergoing maintenance hemodialysis remains unclear. This study included 240 hemodialysis patients (64.5 [55.3-74.0] years, 35.8% women) from a tertiary medical center. A baseline assessment of demographic and clinical data, biochemical parameters, and body composition was conducted. Plasma galectin-3 and other biomarkers were measured using a multiplex bead-based immunoassay. Participants were then divided into two subgroups depending on the median value of plasma galectin-3. Malnutrition was identified using the geriatric nutritional risk index (GNRI) and the criteria of the International Society of Renal Nutrition and Metabolism. Independent risk factors for elevated plasma galectin-3 and malnutrition were identified by multivariate logistic regression. The high galectin-3 group was more likely to be older, have lower lean tissue mass and GNRI scores, be diagnosed with PEW, dialyze through a tunneled catheter, and have higher circulating IL-6, TNF-α, and MCP-1 concentrations than the low galectin-3 group. After multivariate adjustment, only low mean arterial pressure, dialyzing with tunneled cuffed catheters, and elevated systemic inflammatory markers correlated with high galectin-3 levels. Plasma galectin-3 concentrations also increased significantly in hemodialysis patients with PEW. However, compared with other commonly used nutritional indicators, galectin-3 did not show superiority in predicting PEW. Although the plasma galectin-3 levels correlated with PEW severity, this correlation disappeared after adjustment for potential confounding variables (OR, 1.000; 95% CI, 0.999-1.001). In conclusion, plasma galectin-3 is a valuable biomarker for systemic inflammation but is less prominent for PEW in patients with maintenance hemodialysis. Further identification of novel biomarkers is required to detect patients at risk for malnutrition and implement appropriate interventions.


Subject(s)
Galectins/blood , Inflammation , Kidney Failure, Chronic , Protein-Energy Malnutrition , Renal Dialysis/statistics & numerical data , Aged , Blood Proteins , Cross-Sectional Studies , Female , Humans , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/epidemiology , Kidney Failure, Chronic/therapy , Male , Middle Aged
15.
Glycobiology ; 31(9): 1230-1238, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34132764

ABSTRACT

Glycosylation is important for biological functions of proteins and greatly affected by diseases. Exploring the glycosylation profile of the protein-specific glycosylation and/or the site-specific glycosylation may help understand disease etiology, differentiate diseases and ultimately develop therapeutics. Patients with multiple sclerosis (MS) and patients with neuromyelitis optica spectrum disorder (NMOSD) are sometimes difficult to differentiate due to the similarity in their clinical symptoms. The disease-related glycosylation profiles of MS and NMOSD have not yet been well studied. Here, we analyzed site-specific glycan profiles of serum proteins of these patients by using a recently developed mass spectrometry technique. A total of 286 glycopeptides from 49 serum glycoproteins were quantified and compared between healthy controls (n = 6), remitting MS (n = 45) and remitting NMOSD (n = 23) patients. Significant differences in the levels of site-specific N-glycans on inflammation-associated components [IgM, IgG1, IgG2, complement components 8b (CO8B) and attractin], central nerve system-damage-related serum proteins [apolipoprotein D (APOD), alpha-1-antitrypsin, plasma kallikrein and ADAMTS-like protein 3] were observed among three study groups. We furthered demonstrated that site-specific N-glycans on APOD on site 98, CO8B on sites 243 and 553 are potential markers to differentiate MS from NMOSD with an area under receiver operating curve value > 0.75. All these observations indicate that remitting MS or NMOSD patients possess a unique disease-associated glyco-signature in their serum proteins. We conclude that monitoring one's serum protein glycan profile using this high-throughput analysis may provide an additional diagnostic criterion for differentiating diseases, monitoring disease status and estimating response-to-treatment effect.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Biomarkers , Humans , Immunoglobulin G , Multiple Sclerosis/diagnosis , Neuromyelitis Optica/diagnosis , Pilot Projects
16.
J Invest Dermatol ; 141(3): 503-511.e9, 2021 03.
Article in English | MEDLINE | ID: mdl-32805218

ABSTRACT

Psoriasis is a chronic inflammatory skin disease that develops under the influence of the IL-23/T helper 17 cell axis and is characterized by intense inflammation and prominent epidermal hyperplasia. In this study, we demonstrate that galectin-8, a ß-galactoside‒binding lectin, is upregulated in the epidermis of human psoriatic skin lesions as well as in a mouse model of psoriasis induced by intradermal IL-23 injections and in IL-17A‒treated keratinocytes. We show that keratinocyte proliferation is less prominent in galectin-8‒knockout mice after intradermal IL-23 treatment than in wild-type mice. In addition, we show that galectin-8 levels in keratinocytes are positively correlated with the ability of the cells to proliferate and that transitioning from mitosis into G1 phase is delayed in galectin-8‒knockout HaCaT cells after cell-cycle synchronization and release. We demonstrate by immunofluorescence staining and immunoblotting the presence of galectin-8 within the mitotic apparatus. We reveal by coimmunoprecipitation and mass spectrometry analysis that α-tubulin interacts with galectin-8 during mitosis. Finally, we show that in the absence of galectin-8, pericentrin compactness is lessened and mitotic microtubule length is shortened, as demonstrated by immunofluorescence staining. We conclude that galectin-8 is upregulated in psoriasis and contributes to the hyperproliferation of keratinocytes by maintaining centrosome integrity during mitosis through interacting with α-tubulin.


Subject(s)
Epidermis/pathology , Galectins/genetics , Interleukin-17/metabolism , Psoriasis/immunology , Animals , Cell Proliferation , Disease Models, Animal , Epidermis/immunology , Galectins/metabolism , Gene Knockout Techniques , HaCaT Cells , Humans , Interleukin-23/administration & dosage , Interleukin-23/immunology , Mice , Mice, Knockout , Mitosis/immunology , Psoriasis/pathology , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Tubulin/metabolism , Up-Regulation/immunology
17.
Theranostics ; 10(26): 12026-12043, 2020.
Article in English | MEDLINE | ID: mdl-33204327

ABSTRACT

Cell-cell interaction in skin homeostasis is tightly controlled by adherens junctions (AJs). Alterations in such regulation lead to melanoma development. However, mutations in AJs and their functional consequences are still largely unknown. Methods: Cadherin mutations in skin cutaneous melanoma were identified using sequencing data from TCGA dataset, followed by cross-validation with data from non-TCGA cohorts. Mutations with significant occurrence were subjected to structural prediction using MODELLER and functional protein simulation using GROMACS software. Neo-antigen prediction was carried out using NetMHCpan tool. Cell-based fluorescence reporter assay was used to validate ß-catenin activity in the presence of cadherin mutations. Clinical significance was analyzed using datasets from TCGA and other non-TCGA cohorts. Targeted gene exon sequencing and immunofluorescence staining on melanoma tissues were performed to confirm the in silico findings. Results: Highly frequent mutations in type-II classical cadherins were found in melanoma with one unique recurrent mutation (S524L) in the fifth domain of CDH6, which potentially destabilizes Ca2+-binding and cell-cell contacts. Mutational co-occurrence and physical dynamics analyses placed CDH6 at the center of the top-four mutated cadherins (core CDHs; all type-II), suggesting altered heterophilic interactions in melanoma development. Mutations in the intracellular domains significantly disturbed CDH6/ß-catenin complex formation, resulting in ß-catenin translocation into cytosol or nucleus and dysregulation of canonical Wnt/ß-catenin signaling. Although mutations in core CDH genes correlated with advanced cancer stages and lymph node invasion, the overall and disease-free survival times in those patients were longer in patients with wild-type. Peptide/MHC-I binding affinity predictions confirmed overall increased neo-antigen potentials of mutated cadherins, which associated with T-lymphocyte infiltration and better clinical outcomes after immunotherapy. Conclusion: Changes in cell-cell communications by somatic mutations in AJ cadherins function as one of mechanisms to trigger melanoma development. Certain mutations in AJs may serve as potential neo-antigens which conversely benefit patients for longer survival times.


Subject(s)
Adherens Junctions/genetics , Antigens, Neoplasm/genetics , Cadherins/genetics , Melanoma/genetics , Skin Neoplasms/genetics , Adherens Junctions/immunology , Adherens Junctions/pathology , Antigens, Neoplasm/immunology , Cadherins/immunology , Cadherins/metabolism , Carcinogenesis/genetics , Carcinogenesis/immunology , Cell Line, Tumor , Cross-Sectional Studies , DNA Mutational Analysis , Datasets as Topic , Disease-Free Survival , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/mortality , Melanoma/pathology , Mutagenesis, Site-Directed , Mutation , Protein Binding/genetics , Protein Binding/immunology , Skin/immunology , Skin/pathology , Skin Neoplasms/mortality , Skin Neoplasms/pathology , T-Lymphocytes/immunology , beta Catenin/metabolism
18.
Glycobiology ; 30(1): 49-57, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31553041

ABSTRACT

Galectins are ß-galactoside-binding animal lectins primarily found in the cytosol, while their carbohydrate ligands are mainly distributed in the extracellular space. Cytosolic galectins are anticipated to accumulate on damaged endocytic vesicles through binding to glycans initially displayed on the cell surface and subsequently located in the lumen of the vesicles, and this can be followed by cellular responses. To facilitate elucidation of the mechanism underlying this process, we adopted a model system involving induction of endocytic vesicle damage with light that targets the endocytosed amphiphilic photosensitizer disulfonated aluminum phthalocyanine. We demonstrate that the levels of galectins around damaged endosomes are dependent on the composition of carbohydrates recognized by the proteins. By super resolution imaging, galectin-3 and galectin-8 aggregates were found to be distributed in distinct microcompartments. Importantly, galectin accumulation is significantly affected when cell surface glycans are altered. Furthermore, accumulated galectins can direct autophagy adaptor proteins toward damaged endocytic vesicles, which are also significantly affected following alteration of cell surface glycans. We conclude that cytosolic galectins control cellular responses reflect dynamic modifications of cell surface glycans.


Subject(s)
Carbohydrates/chemistry , Galectins/metabolism , A549 Cells , Animals , CHO Cells , Cell Communication , Cells, Cultured , Cricetulus , Endosomes/metabolism , Galectins/chemistry , Humans
19.
Nat Commun ; 10(1): 3473, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375685

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder that manifests with movement dysfunction. The expression of mutant Huntingtin (mHTT) disrupts the functions of brain cells. Galectin-3 (Gal3) is a lectin that has not been extensively explored in brain diseases. Herein, we showed that the plasma Gal3 levels of HD patients and mice correlated with disease severity. Moreover, brain Gal3 levels were higher in patients and mice with HD than those in controls. The up-regulation of Gal3 in HD mice occurred before motor impairment, and its level remained high in microglia throughout disease progression. The cell-autonomous up-regulated Gal3 formed puncta in damaged lysosomes and contributed to inflammation through NFκB- and NLRP3 inflammasome-dependent pathways. Knockdown of Gal3 suppressed inflammation, reduced mHTT aggregation, restored neuronal DARPP32 levels, ameliorated motor dysfunction, and increased survival in HD mice. Thus, suppression of Gal3 ameliorates microglia-mediated pathogenesis, which suggests that Gal3 is a novel druggable target for HD.


Subject(s)
Brain/pathology , Galectin 3/metabolism , Huntington Disease/pathology , Microglia/pathology , Adult , Animals , Blood Proteins , Brain/cytology , Brain/ultrastructure , Disease Models, Animal , Disease Progression , Female , Galectin 3/blood , Galectin 3/genetics , Galectins , Gene Knockdown Techniques , Humans , Huntington Disease/blood , Huntington Disease/diagnosis , Inflammasomes/metabolism , Lysosomes/metabolism , Lysosomes/ultrastructure , Male , Mice , Microglia/cytology , Microglia/ultrastructure , Microscopy, Electron, Transmission , Middle Aged , Severity of Illness Index , Up-Regulation
20.
Glycobiology ; 29(2): 151-162, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30289459

ABSTRACT

Galectin-8, a beta-galactoside-binding lectin, is upregulated in the gastric tissues of rhesus macaques infected with Helicobacter pylori. In this study, we found that H. pylori infection triggers intracellular galectin-8 aggregation in human-derived AGS gastric epithelial cells, and that these aggregates colocalize with lysosomes. Notably, this aggregation is markedly reduced following the attenuation of host O-glycan processing. This indicates that H. pylori infection induces lysosomal damage, which in turn results in the accumulation of cytosolic galectin-8 around damaged lysosomes through the recognition of exposed vacuolar host O-glycans. H. pylori-induced galectin-8 aggregates also colocalize with autophagosomes, and galectin-8 ablation reduces the activation of autophagy by H. pylori. This suggests that galectin-8 aggregates may enhance autophagy activity in infected cells. We also observed that both autophagy and NDP52, an autophagy adapter, contribute to the augmentation of galectin-8 aggregation by H. pylori. Additionally, vacuolating cytotoxin A, a secreted H. pylori cytotoxin, may contribute to the increased galectin-8 aggregation and elevated autophagy response in infected cells. Collectively, these results suggest that H. pylori promotes intracellular galectin-8 aggregation, and that galectin-8 aggregation and autophagy may reciprocally regulate each other during infection.


Subject(s)
Epithelial Cells/metabolism , Galectins/metabolism , Gastric Mucosa/metabolism , Helicobacter pylori/metabolism , Lysosomes/metabolism , Polysaccharides/metabolism , Autophagy , Gastric Mucosa/pathology , Humans , Protein Aggregates
SELECTION OF CITATIONS
SEARCH DETAIL