Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Viruses ; 16(7)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39066329

ABSTRACT

Natural Killer (NK) cells have the potential to eliminate HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC). NK cell activation is tightly regulated by the engagement of its inhibitory and activating receptors. The activating receptor CD16 drives ADCC upon binding to the Fc portion of antibodies; NK cell activation is further sustained by the co-engagement of activating receptors NTB-A and 2B4. During HIV-1 infection, Nef and Vpu accessory proteins contribute to ADCC escape by downregulating the ligands of NTB-A and 2B4. HIV-1 also evades ADCC by keeping its envelope glycoproteins (Env) in a "closed" conformation which effectively masks epitopes recognized by non-neutralizing antibodies (nnAbs) which are abundant in the plasma of people living with HIV. To achieve this, the virus uses its accessory proteins Nef and Vpu to downregulate the CD4 receptor, which otherwise interacts with Env and exposes the epitopes recognized by nnAbs. Small CD4-mimetic compounds (CD4mc) have the capacity to expose these epitopes, thus sensitizing infected cells to ADCC. Given the central role of NK cell co-activating receptors NTB-A and 2B4 in Fc-effector functions, we studied their contribution to CD4mc-mediated ADCC. Despite the fact that their ligands are partially downregulated by HIV-1, we found that both co-activating receptors significantly contribute to CD4mc sensitization of HIV-1-infected cells to ADCC.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , HIV Antibodies , HIV Infections , HIV-1 , Killer Cells, Natural , Signaling Lymphocytic Activation Molecule Family , Humans , Antibody-Dependent Cell Cytotoxicity/immunology , HIV-1/immunology , Killer Cells, Natural/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/virology , Signaling Lymphocytic Activation Molecule Family/immunology , Signaling Lymphocytic Activation Molecule Family/metabolism , CD4 Antigens/immunology , CD4 Antigens/metabolism , Human Immunodeficiency Virus Proteins/immunology , Human Immunodeficiency Virus Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/immunology , nef Gene Products, Human Immunodeficiency Virus/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/immunology , Viral Regulatory and Accessory Proteins/genetics , Antibodies, Neutralizing/immunology , Viroporin Proteins
2.
medRxiv ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38883797

ABSTRACT

CD4-mimetics (CD4mcs) are small molecule compounds that mimic the interaction of the CD4 receptor with HIV-1 envelope glycoproteins (Env). Env from primary viruses normally samples a "closed" conformation which occludes epitopes recognized by CD4-induced (CD4i) non-neutralizing antibodies (nnAbs). CD4mcs induce conformational changes on Env resulting in the exposure of these otherwise inaccessible epitopes. Here we evaluated the capacity of plasma from a cohort of 50 people living with HIV to recognize HIV-1-infected cells and eliminate them by antibody-dependent cellular cytotoxicity (ADCC) in the presence of a potent indoline CD4mc. We observed a marked heterogeneity among plasma samples. By measuring the levels of different families of CD4i Abs, we found that the levels of anti-cluster A, anti-coreceptor binding site and anti-gp41 cluster I antibodies are responsible for plasma-mediated ADCC in presence of CD4mc.

3.
bioRxiv ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38895270

ABSTRACT

The majority of naturally-elicited antibodies against the HIV-1 envelope glycoproteins (Env) are non-neutralizing (nnAbs), because they are unable to recognize the Env timer in its native "closed" conformation. Nevertheless, it has been shown that nnAbs have the potential to eliminate HIV-1-infected cells by Antibody-Dependent Cellular Cytotoxicity (ADCC) provided that Env is present on the cell surface in its "open" conformation. This is because most nnAbs recognize epitopes that become accessible only after Env interaction with CD4 and the exposure of epitopes that are normally occluded in the closed trimer. HIV-1 limits this vulnerability by downregulating CD4 from the surface of infected cells, thus preventing a premature encounter of Env with CD4. Small CD4-mimetics (CD4mc) sensitize HIV-1-infected cells to ADCC by opening the Env glycoprotein and exposing CD4-induced (CD4i) epitopes. There are two families of CD4i nnAbs, termed anti-cluster A and anti-CoRBS Abs, which are known to mediate ADCC in the presence of CD4mc. Here, we performed Fab competition experiments and found that anti-gp41 cluster I antibodies comprise a major fraction of the plasma ADCC activity in people living with HIV (PLWH). Moreover, addition of gp41 cluster I antibodies to cluster A and CoRBS antibodies greatly enhanced ADCC mediated cell killing in the presence of a potent indoline CD4mc, CJF-III-288. This cocktail outperformed broadly-neutralizing antibodies and even showed activity against HIV-1 infected monocyte-derived macrophages. Thus, combining CD4i antibodies with different specificities achieves maximal ADCC activity, which may be of utility in HIV cure strategies.

4.
J Virol ; 97(9): e0059223, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37696048

ABSTRACT

The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer mediates entry into host cells by binding receptors, CD4 and CCR5/CXCR4, and fusing the viral and cell membranes. In infected cells, cleavage of the gp160 Env precursor yields the mature Env trimer, with gp120 exterior and gp41 transmembrane Env subunits. Env cleavage stabilizes the State-1 conformation, which is the major target for broadly neutralizing antibodies, and decreases the spontaneous sampling of more open Env conformations that expose epitopes for poorly neutralizing antibodies. During HIV-1 entry into cells, CD4 binding drives the metastable Env from a pretriggered (State-1) conformation into more "open," lower-energy states. Here, we report that changes in two dissimilar elements of the HIV-1 Env trimer, namely particular gp120 glycans and the gp41 fusion peptide-proximal region (FPPR), can independently modulate the stability of State 1. Individual deletion of several gp120 glycans destabilized State 1, whereas removal of a V1 glycan resulted in phenotypes indicative of a more stable pretriggered Env conformation. Likewise, some alterations of the gp41 FPPR decreased the level of spontaneous shedding of gp120 from the Env trimer and stabilized the pretriggered State-1 Env conformation. State-1-stabilizing changes were additive and could suppress the phenotypes associated with State-1-destabilizing alterations in Env. Our results support a model in which multiple protein and carbohydrate elements of the HIV-1 Env trimer additively contribute to the stability of the pretriggered (State-1) conformation. The Env modifications identified in this study will assist efforts to characterize the structure and immunogenicity of the metastable State-1 conformation. IMPORTANCE The elicitation of antibodies that neutralize multiple strains of HIV-1 is an elusive goal that has frustrated the development of an effective vaccine. The pretriggered shape of the HIV-1 envelope glycoprotein (Env) spike on the virus surface is the major target for such broadly neutralizing antibodies. The "closed" pretriggered Env shape resists the binding of most antibodies but is unstable and often assumes "open" shapes that elicit ineffective antibodies. We identified particular changes in both the protein and the sugar components of the Env trimer that stabilize the pretriggered shape. Combinations of these changes were even more effective at stabilizing the pretriggered Env than the individual changes. Stabilizing changes in Env could counteract the effect of Env changes that destabilize the pretriggered shape. Locking Env in its pretriggered shape will assist efforts to understand the Env spike on the virus and to incorporate this shape into vaccines.


Subject(s)
HIV-1 , Humans , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , env Gene Products, Human Immunodeficiency Virus , Glycoproteins/genetics , HIV Antibodies , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/metabolism , Peptides/metabolism , Polysaccharides , Protein Conformation
5.
J Virol ; 97(10): e0115423, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37772823

ABSTRACT

IMPORTANCE: HIV infection can be effectively treated to prevent the development of AIDS, but it cannot be cured. We have attached poisons to anti-HIV antibodies to kill the infected cells that persist even after years of effective antiviral therapy. Here we show that the killing of infected cells can be markedly enhanced by the addition of soluble forms of the HIV receptor CD4 or by mimics of CD4.


Subject(s)
CD4 Antigens , Cytotoxins , HIV Antibodies , HIV Infections , HIV-1 , Immunoconjugates , Humans , CD4 Antigens/chemistry , CD4 Antigens/immunology , CD4 Antigens/therapeutic use , Cell Line , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , HIV-1/drug effects , HIV-1/immunology , Immunoconjugates/chemistry , Immunoconjugates/immunology , Immunoconjugates/therapeutic use , Molecular Weight , HIV Antibodies/chemistry , HIV Antibodies/immunology , HIV Antibodies/therapeutic use , Cytotoxins/chemistry , Cytotoxins/therapeutic use
6.
Proc Natl Acad Sci U S A ; 120(13): e2222073120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36961924

ABSTRACT

Binding to the host cell receptors, CD4 and CCR5/CXCR4, triggers large-scale conformational changes in the HIV-1 envelope glycoprotein (Env) trimer [(gp120/gp41)3] that promote virus entry into the cell. CD4-mimetic compounds (CD4mcs) comprise small organic molecules that bind in the highly conserved CD4-binding site of gp120 and prematurely induce inactivating Env conformational changes, including shedding of gp120 from the Env trimer. By inducing more "open," antibody-susceptible Env conformations, CD4mcs also sensitize HIV-1 virions to neutralization by antibodies and infected cells to antibody-dependent cellular cytotoxicity (ADCC). Here, we report the design, synthesis, and evaluation of novel CD4mcs based on an indoline scaffold. Compared with our current lead indane scaffold CD4mc, BNM-III-170, several indoline CD4mcs exhibit increased potency and breadth against HIV-1 variants from different geographic clades. Viruses that were selected for resistance to the lead indane CD4mc, BNM-III-170, are susceptible to inhibition by the indoline CD4mcs. The indoline CD4mcs also potently sensitize HIV-1-infected cells to ADCC mediated by plasma from HIV-1-infected individuals. Crystal structures indicate that the indoline CD4mcs gain potency compared to the indane CD4mcs through more favorable π-π overlap from the indoline pose and by making favorable contacts with the vestibule of the CD4-binding pocket on gp120. The rational design of indoline CD4mcs thus holds promise for further improvements in antiviral activity, potentially contributing to efforts to treat and prevent HIV-1 infection.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , Antibody-Dependent Cell Cytotoxicity , HIV Envelope Protein gp120 , CD4 Antigens/metabolism , HIV Antibodies/pharmacology
7.
Cell Chem Biol ; 30(5): 540-552.e6, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36958337

ABSTRACT

While HIV-1-mediated CD4 downregulation protects infected cells from antibody-dependent cellular cytotoxicity (ADCC), shed gp120 binds to CD4 on uninfected bystander CD4+ T cells, sensitizing them to ADCC mediated by HIV+ plasma. Soluble gp120-CD4 interaction on multiple immune cells also triggers a cytokine burst. The small molecule temsavir acts as an HIV-1 attachment inhibitor by preventing envelope glycoprotein (Env)-CD4 interaction and alters the overall antigenicity of Env by affecting its processing and glycosylation. Here we show that temsavir also blocks the immunomodulatory activities of shed gp120. Temsavir prevents shed gp120 from interacting with uninfected bystander CD4+ cells, protecting them from ADCC responses and preventing a cytokine burst. Mechanistically, this depends on temsavir's capacity to prevent soluble gp120-CD4 interaction, to reduce gp120 shedding, and to alter gp120 antigenicity. This suggests that the clinical benefits provided by temsavir could extend beyond blocking viral entry.


Subject(s)
HIV-1 , CD4-Positive T-Lymphocytes/metabolism , Down-Regulation , HIV Envelope Protein gp120 , Cytokines/metabolism
8.
Cell Rep ; 42(1): 111983, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640355

ABSTRACT

HIV-1 envelope (Env) conformation determines the susceptibility of infected CD4+ T cells to antibody-dependent cellular cytotoxicity (ADCC). Upon interaction with CD4, Env adopts more "open" conformations, exposing ADCC epitopes. HIV-1 limits Env-CD4 interaction and protects infected cells against ADCC by downregulating CD4 via Nef, Vpu, and Env. Limited data exist, however, of the role of these proteins in downmodulating CD4 on infected macrophages and how this impacts Env conformation. While Nef, Vpu, and Env are all required to efficiently downregulate CD4 on infected CD4+ T cells, we show here that any one of these proteins is sufficient to downmodulate most CD4 from the surface of infected macrophages. Consistent with this finding, Nef and Vpu have a lesser impact on Env conformation and ADCC sensitivity in infected macrophages compared with CD4+ T cells. However, treatment of infected macrophages with small CD4 mimetics exposes vulnerable CD4-induced Env epitopes and sensitizes them to ADCC.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV Infections/metabolism , CD4-Positive T-Lymphocytes , env Gene Products, Human Immunodeficiency Virus/metabolism , HIV Antibodies/metabolism , Epitopes/metabolism , Antibody-Dependent Cell Cytotoxicity
9.
Cell Rep ; 41(6): 111624, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351384

ABSTRACT

Non-neutralizing antibodies (nnAbs) can eliminate HIV-1-infected cells via antibody-dependent cellular cytotoxicity (ADCC) and were identified as a correlate of protection in the RV144 vaccine trial. Fc-mediated effector functions of nnAbs were recently shown to alter the course of HIV-1 infection in vivo using a vpu-defective virus. Since Vpu is known to downregulate cell-surface CD4, which triggers conformational changes in the viral envelope glycoprotein (Env), we ask whether the lack of Vpu expression was linked to the observed nnAbs activity. We find that restoring Vpu expression greatly reduces nnAb recognition of infected cells, rendering them resistant to ADCC. Moreover, administration of nnAbs in humanized mice reduces viral loads only in animals infected with a vpu-defective but not with a wild-type virus. CD4-mimetics administration, known to "open" Env and expose nnAb epitopes, renders wild-type viruses sensitive to nnAbs Fc-effector functions. This work highlights the importance of Vpu-mediated evasion of humoral responses.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Animals , Humans , Mice , Antibodies, Neutralizing , Antibody-Dependent Cell Cytotoxicity , HIV Antibodies
10.
J Virol ; 96(17): e0063622, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35980207

ABSTRACT

Binding to the host cell receptors CD4 and CCR5/CXCR4 triggers conformational changes in the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer that promote virus entry. CD4 binding allows the gp120 exterior Env to bind CCR5/CXCR4 and induces a short-lived prehairpin intermediate conformation in the gp41 transmembrane Env. Small-molecule CD4-mimetic compounds (CD4mcs) bind within the conserved Phe-43 cavity of gp120, near the binding site for CD4. CD4mcs like BNM-III-170 inhibit HIV-1 infection by competing with CD4 and by prematurely activating Env, leading to irreversible inactivation. In cell culture, we selected and analyzed variants of the primary HIV-1AD8 strain resistant to BNM-III-170. Two changes (S375N and I424T) in gp120 residues that flank the Phe-43 cavity each conferred an ~5-fold resistance to BNM-III-170 with minimal fitness cost. A third change (E64G) in layer 1 of the gp120 inner domain resulted in ~100-fold resistance to BNM-III-170, ~2- to 3-fold resistance to soluble CD4-Ig, and a moderate decrease in viral fitness. The gp120 changes additively or synergistically contributed to BNM-III-170 resistance. The sensitivity of the Env variants to BNM-III-170 inhibition of virus entry correlated with their sensitivity to BNM-III-170-induced Env activation and shedding of gp120. Together, the S375N and I424T changes, but not the E64G change, conferred >100-fold and 33-fold resistance to BMS-806 and BMS-529 (temsavir), respectively, potent HIV-1 entry inhibitors that block Env conformational transitions. These studies identify pathways whereby HIV-1 can develop resistance to CD4mcs and conformational blockers, two classes of entry inhibitors that target the conserved gp120 Phe-43 cavity. IMPORTANCE CD4-mimetic compounds (CD4mcs) and conformational blockers like BMS-806 and BMS-529 (temsavir) are small-molecule inhibitors of human immunodeficiency virus (HIV-1) entry into host cells. Although CD4mcs and conformational blockers inhibit HIV-1 entry by different mechanisms, they both target a pocket on the viral envelope glycoprotein (Env) spike that is used for binding to the receptor CD4 and is highly conserved among HIV-1 strains. Our study identifies changes near this pocket that can confer various levels of resistance to the antiviral effects of a CD4mc and conformational blockers. We relate the antiviral potency of a CD4mc against this panel of HIV-1 variants to the ability of the CD4mc to activate changes in Env conformation and to induce the shedding of the gp120 exterior Env from the spike. These findings will guide efforts to improve the potency and breadth of small-molecule HIV-1 entry inhibitors.


Subject(s)
CD4 Antigens , Drug Resistance, Viral , Glycoproteins , Guanidines , Indenes , Mutation , env Gene Products, Human Immunodeficiency Virus , Binding Sites/genetics , CD4 Antigens/chemistry , CD4 Antigens/metabolism , Drug Resistance, Viral/genetics , Glycoproteins/chemistry , Glycoproteins/genetics , Glycoproteins/metabolism , Guanidines/chemistry , Guanidines/pharmacology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV Envelope Protein gp41/metabolism , HIV Fusion Inhibitors/chemistry , HIV Fusion Inhibitors/pharmacology , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/chemistry , HIV-1/drug effects , HIV-1/metabolism , Humans , Indenes/chemistry , Indenes/pharmacology , Protein Conformation/drug effects , Receptors, HIV/chemistry , Receptors, HIV/metabolism , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism
11.
Viruses ; 13(11)2021 11 06.
Article in English | MEDLINE | ID: mdl-34835042

ABSTRACT

The HIV-1 envelope glycoprotein (Env) is synthesized in the endoplasmic reticulum as a trimeric gp160 precursor, which requires proteolytic cleavage by a cellular furin protease to mediate virus-cell fusion. Env is conformationally flexible but controls its transition from the unbound "closed" conformation (State 1) to downstream CD4-bound conformations (States 2/3), which are required for fusion. In particular, HIV-1 has evolved several mechanisms that reduce the premature "opening" of Env which exposes highly conserved epitopes recognized by non-neutralizing antibodies (nnAbs) capable of mediating antibody-dependent cellular cytotoxicity (ADCC). Env cleavage decreases its conformational transitions favoring the adoption of the "closed" conformation. Here we altered the gp160 furin cleavage site to impair Env cleavage and to examine its impact on ADCC responses mediated by plasma from HIV-1-infected individuals. We found that infected primary CD4+ T cells expressing uncleaved, but not wildtype, Env are efficiently recognized by nnAbs and become highly susceptible to ADCC responses mediated by plasma from HIV-1-infected individuals. Thus, HIV-1 limits the exposure of uncleaved Env at the surface of HIV-1-infected cells at least in part to escape ADCC responses.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , HIV Infections/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Motifs , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Membrane/metabolism , HIV Antibodies/immunology , HIV Envelope Protein gp160/chemistry , HIV Envelope Protein gp160/genetics , HIV Envelope Protein gp160/metabolism , HIV-1/metabolism , Humans , Mutation , Protein Conformation , Proteolysis , Virion/immunology , Virion/metabolism , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
12.
Viruses ; 13(10)2021 09 29.
Article in English | MEDLINE | ID: mdl-34696383

ABSTRACT

To minimize immune responses against infected cells, HIV-1 has evolved different mechanisms to limit the surface expression of its envelope glycoproteins (Env). Recent observations suggest that the binding of certain broadly neutralizing antibodies (bNAbs) targeting the 'closed' conformation of Env induces its internalization. On the other hand, non-neutralizing antibodies (nNAbs) that preferentially target Env in its 'open' conformation, remain bound to Env on the cell surface for longer periods of time. In this study, we attempt to better understand the underlying mechanisms behind the differential rates of antibody-mediated Env internalization. We demonstrate that 'forcing' open Env using CD4 mimetics allows for nNAb binding and results in similar rates of Env internalization as those observed upon the bNAb binding. Moreover, we can identify distinct populations of Env that are differentially targeted by Abs that mediate faster rates of internalization, suggesting that the mechanism of antibody-induced Env internalization partially depends on the localization of Env on the cell surface.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Endocytosis/immunology , HIV Antibodies/immunology , HIV-1/immunology , Virus Internalization , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism , CD4 Antigens/metabolism , Epitopes/immunology , HEK293 Cells , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/metabolism , Humans , Molecular Conformation
13.
Cell Host Microbe ; 29(6): 904-916.e6, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34019804

ABSTRACT

Small CD4-mimetic compounds (CD4mc) sensitize HIV-1-infected cells to antibody-dependent cellular cytotoxicity (ADCC) by facilitating antibody recognition of epitopes that are otherwise occluded on the unliganded viral envelope (Env). Combining CD4mc with two families of CD4-induced (CD4i) antibodies, which are frequently found in plasma of HIV-1-infected individuals, stabilizes Env in a conformation that is vulnerable to ADCC. We employed new-generation SRG-15 humanized mice, supporting natural killer (NK) cell and Fc-effector functions to demonstrate that brief treatment with CD4mc and CD4i-Abs significantly decreases HIV-1 replication, the virus reservoir and viral rebound after ART interruption. These effects required Fc-effector functions and NK cells, highlighting the importance of ADCC. Viral rebound was also suppressed in HIV-1+-donor cell-derived humanized mice supplemented with autologous HIV-1+-donor-derived plasma and CD4mc. These results indicate that CD4mc could have therapeutic utility in infected individuals for decreasing the size of the HIV-1 reservoir and/or achieving a functional cure.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antiviral Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/drug effects , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibody-Dependent Cell Cytotoxicity , CD4 Antigens/chemistry , CD4 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cell Line , Epitopes/immunology , Female , Glycoproteins/chemistry , Glycoproteins/immunology , HEK293 Cells , HIV Infections/virology , HIV-1/chemistry , Humans , Immunoglobulin Fc Fragments/immunology , Killer Cells, Natural/immunology , Male , Mice , Mice, SCID , Models, Animal , Protein Conformation , Virus Replication/drug effects , env Gene Products, Human Immunodeficiency Virus/chemistry
14.
Org Process Res Dev ; 23(11): 2464-2469, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-33013157

ABSTRACT

We report here the development and optimization of a process synthesis for the HIV-1 entry inhibitor BNM-III-170 bis-TFA salt (1). The synthesis features a dynamic-kinetic resolution (DKR) to establish the initial stereogenicity. By taking advantage of significant sequence modifications of our first generation synthesis, inconjunction with the low solubility of late-stage intermediates, the overall efficiency of the synthesis has been significantly improved, now to proceed in an overall yield of 9.64% for the 16-steps, requiring only a single chromatographic separation.

15.
Biomaterials ; 103: 207-218, 2016 10.
Article in English | MEDLINE | ID: mdl-27392289

ABSTRACT

Aging-related oxidative stress is considered a major risk factor of cardiovascular diseases (CVD) and could be associated with mitochondrial dysfunction and reactive oxygen species (ROS) overproduction. Cisd2 is an outer mitochondrial membrane protein and plays an important role in controlling the lifespan of mammals. Ferulic acid (FA), a natural antioxidant, is able to improve cardiovascular functions and inhibit the pathogenetic CVD process. However, directly administering therapeutics with antioxidant molecules is challenging because of stability and bioavailability issues. In the present study, thermosensitive chitosan-gelatin-based hydrogel containing FA was used to treat Cisd2-deficient (Cisd2(-/-)) cardiomyocytes (CM) derived from induced pluripotent stem cells of Cisd2(-/-) murine under oxidative stress. The results revealed that the developed hydrogel could provide a sustained release of FA and increase the cell viability. Post-treatment of FA-loaded hydrogel effectively decreased the oxidative stress-induced damage in Cisd2(-/-) CM via increasing catalase activity and decreasing endogenous reactive oxygen species (ROS) production. The in vivo biocompatibility of FA-loaded hydrogel was confirmed in subcutaneously injected rabbits and intramyocardially injected Cisd2(-/-) mice. These results suggest that the thermosensitive FA-loaded hydrogel could rescue Cisd2(-/-) CM from oxidative stress-induced damage and may have potential applications in the future treatment of CVD.


Subject(s)
Carrier Proteins/metabolism , Coumaric Acids/administration & dosage , Delayed-Action Preparations/administration & dosage , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Nerve Tissue Proteins/metabolism , Oxidative Stress/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Antioxidants/administration & dosage , Autophagy-Related Proteins , Cells, Cultured , Coumaric Acids/chemistry , Delayed-Action Preparations/chemistry , Hydrogels/administration & dosage , Hydrogels/chemistry , Injections , Mice , Mice, Knockout , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism
16.
Int J Neural Syst ; 18(6): 491-526, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19145665

ABSTRACT

We present a machine learning approach to discover the agent dynamics that drives the evolution of the social groups in a community. We set up the problem by introducing an agent-based hidden Markov model for the agent dynamics: an agent's actions are determined by micro-laws. Nonetheless, We learn the agent dynamics from the observed communications without knowing state transitions. Our approach is to identify the appropriate micro-laws corresponding to an identification of the appropriate parameters in the model. The model identification problem is then formulated as a mixed optimization problem. To solve the problem, we develop a multistage learning process for determining the group structure, the group evolution, and the micro-laws of a community based on the observed set of communications among actors, without knowing the semantic contents. Finally, to test the quality of our approximations and the feasibility of the approach, we present the results of extensive experiments on synthetic data as well as the results on real communities, such as Enron email and Movie newsgroups. Insight into agent dynamics helps us understand the driving forces behind social evolution.


Subject(s)
Artificial Intelligence , Interpersonal Relations , Learning , Markov Chains , Models, Statistical , Algorithms , Communication , Computer Simulation , Humans , Nonlinear Dynamics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL