Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Lett ; 7(6): 478-489, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045724

ABSTRACT

The effect of parental age on germline mutation rate across generations is not fully understood. While some studies report a positive linear relationship of mutation rate with increasing age, others suggest that mutation rate varies with age but not in a linear fashion. We investigated the effect of parental age on germline mutations by generating replicated mutation accumulation lines in Caenorhabditis remanei at three parental ages ("Young T1" [Day 1], "Peak T2" [Day 2], and "Old T5" [Day 5] parents). We conducted whole-genome resequencing and variant calling to compare differences in mutation rates after three generations of mutation accumulation. We found that Peak T2 lines had an overall reduced mutation rate compared to Young T1 and Old T5 lines, but this pattern of the effect varied depending on the variant impact. Specifically, we found no high-impact variants in Peak T2 lines, and modifiers and up- and downstream gene variants were less frequent in these lines. These results suggest that animals at the peak of reproduction have better DNA maintenance and repair compared to young and old animals. We propose that C. remanei start to reproduce before they optimize their DNA maintenance and repair, trading the benefits of earlier onset of reproduction against offspring mutation load. The increase in offspring mutation load with age likely represents germline senescence.

2.
Elife ; 112022 01 12.
Article in English | MEDLINE | ID: mdl-35018888

ABSTRACT

In the past decade, several studies have estimated the human per-generation germline mutation rate using large pedigrees. More recently, estimates for various nonhuman species have been published. However, methodological differences among studies in detecting germline mutations and estimating mutation rates make direct comparisons difficult. Here, we describe the many different steps involved in estimating pedigree-based mutation rates, including sampling, sequencing, mapping, variant calling, filtering, and appropriately accounting for false-positive and false-negative rates. For each step, we review the different methods and parameter choices that have been used in the recent literature. Additionally, we present the results from a 'Mutationathon,' a competition organized among five research labs to compare germline mutation rate estimates for a single pedigree of rhesus macaques. We report almost a twofold variation in the final estimated rate among groups using different post-alignment processing, calling, and filtering criteria, and provide details into the sources of variation across studies. Though the difference among estimates is not statistically significant, this discrepancy emphasizes the need for standardized methods in mutation rate estimations and the difficulty in comparing rates from different studies. Finally, this work aims to provide guidelines for computational and statistical benchmarks for future studies interested in identifying germline mutations from pedigrees.


Subject(s)
Genetic Techniques , Germ-Line Mutation , Macaca mulatta/genetics , Mutation Rate , Animals , Genetic Techniques/instrumentation , Germ Cells , Laboratories , Pedigree , Reference Standards
3.
Proc Natl Acad Sci U S A ; 117(16): 8973-8979, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32245815

ABSTRACT

The disposable soma theory is a central tenet of the biology of aging where germline immortality comes at the cost of an aging soma [T. B. L. Kirkwood, Nature 270, 301-304 (1977); T. B. L. Kirkwood, Proc. R. Soc. Lond. B Biol. Sci. 205, 531-546 (1979); T. B. L. Kirkwood, S. N. Austad, Nature 408, 233-238 (2000)]. Limited resources and a possible trade-off between the repair and maintenance of the germ cells and growth and maintenance of the soma may explain the deterioration of the soma over time. Here we show that germline removal allows accelerated somatic healing under stress. We tested "the expensive germ line" hypothesis by generating germline-free zebrafish Danio rerio and testing the effect of the presence and absence of the germ line on somatic repair under benign and stressful conditions. We exposed male fish to sublethal low-dose ionizing radiation, a genotoxic stress affecting the soma and the germ line, and tested how fast the soma recovered following partial fin ablation. We found that somatic recovery from ablation occurred substantially faster in irradiated germline-free fish than in the control germline-carrying fish where somatic recovery was stunned. The germ line did show signs of postirradiation recovery in germline-carrying fish in several traits related to offspring number and fitness. These results support the theoretical conjecture that germline maintenance is costly and directly trades off with somatic maintenance.


Subject(s)
Aging/physiology , Regeneration/physiology , Stress, Physiological , Animals , Animals, Genetically Modified , Embryo, Nonmammalian/radiation effects , Female , Gene Knockdown Techniques , Germ Cells/physiology , Germ Cells/radiation effects , Male , Models, Animal , RNA-Binding Proteins/genetics , Sex Factors , Whole-Body Irradiation , Zebrafish/genetics , Zebrafish Proteins/genetics
4.
Exp Gerontol ; 90: 79-82, 2017 04.
Article in English | MEDLINE | ID: mdl-28119053

ABSTRACT

Despite tremendous progress in finding genes that, when manipulated, affects lifespan, little is known about the genetics underlying natural variation in lifespan. While segregating genetic variants for lifespan has been notoriously difficult to find in genome-wide association studies (GWAS), a complementary approach is to manipulate key genetic pathways in lines that differ in lifespan. If these candidate pathways are down regulated in long-lived lines, these lines can be predicted to respond less to pharmaceutical down-regulation of these pathways than short-lived lines. Experimental studies have identified the nutrient-sensing pathway TOR as a key regulator of lifespan in model organisms, and this pathway can effectively be down regulated using the drug rapamycin, which extends lifespan in all tested species. We expose short- and long-lived lines of the nematode Caenorhabditis remanei to rapamycin, and investigate if long-lived lines, which are hypothesized to already have down-regulated TOR signaling, respond less to rapamycin. We found no interaction between line and rapamycin treatment, since rapamycin extended lifespan independent of the intrinsic lifespan of the lines. This shows that rapamycin is equally effective on long and short-lived lines, and suggests that the evolution of long life may involve more factors that down-regulation of TOR.


Subject(s)
Caenorhabditis/drug effects , Genetic Variation , Longevity/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Animals , Caenorhabditis/genetics , Down-Regulation , Female , Helminth Proteins/genetics , Longevity/genetics , Signal Transduction
5.
Curr Biol ; 24(20): 2423-7, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25308078

ABSTRACT

Males and females age at different rates and have different life expectancies across the animal kingdom, but what causes the longevity "gender gaps" remains one of the most fiercely debated puzzles among biologists and demographers. Classic theory predicts that the sex experiencing higher rate of extrinsic mortality evolves faster aging and reduced longevity. However, condition dependence of mortality can counter this effect by selecting against senescence in whole-organism performance. Contrary to the prevailing view but in line with an emerging new theory, we show that the evolution of sex difference in longevity depends on the factors that cause sex-specific mortality and cannot be predicted from the mortality rate alone. Experimental evolution in an obligately sexual roundworm, Caenorhabditis remanei, in which males live longer than females, reveals that sexual dimorphism in longevity erodes rapidly when the extrinsic mortality in males is increased at random. We thus experimentally demonstrate evolution of the sexual monomorphism in longevity in a sexually dimorphic organism. Strikingly, when extrinsic mortality is increased in a way that favors survival of fast-moving individuals, males evolve increased longevities, thereby widening the gender gap. Thus, sex-specific selection on whole-organism performance in males renders them less prone to the ravages of old age than females, despite higher rates of extrinsic mortality. Our results reconcile previous research with recent theoretical breakthroughs by showing that sexual dimorphism in longevity evolves rapidly and predictably as a result of the sex-specific interactions between environmental hazard and organism's condition.


Subject(s)
Caenorhabditis/physiology , Longevity/physiology , Aging , Animals , Biological Evolution , Female , Male , Pheromones , Selection, Genetic , Sex Factors
6.
Biol Lett ; 9(5): 20130217, 2013 Oct 23.
Article in English | MEDLINE | ID: mdl-24088560

ABSTRACT

While ageing is commonly associated with exponential increase in mortality with age, mortality rates paradoxically decelerate late in life resulting in distinct mortality plateaus. Late-life mortality plateaus have been discovered in a broad variety of taxa, including humans, but their origin is hotly debated. One hypothesis argues that deceleration occurs because the individual probability of death stops increasing at very old ages, predicting the evolution of earlier onset of mortality plateaus under increased rate of extrinsic mortality. By contrast, heterogeneity theory suggests that mortality deceleration arises from individual differences in intrinsic lifelong robustness and predicts that variation in robustness between populations will result in differences in mortality deceleration. We used experimental evolution to directly test these predictions by independently manipulating extrinsic mortality rate (high or low) and mortality source (random death or condition-dependent) to create replicate populations of nematodes, Caenorhabditis remanei that differ in the strength of selection in late-life and in the level of lifelong robustness. Late-life mortality deceleration evolved in response to differences in mortality source when mortality rate was held constant, while there was no consistent response to differences in mortality rate. These results provide direct experimental support for the heterogeneity theory of late-life mortality deceleration.


Subject(s)
Aging/physiology , Biological Evolution , Caenorhabditis/physiology , Longevity/physiology , Animals , Linear Models , Mortality
7.
Worm ; 2(3): e23704, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-24778930

ABSTRACT

Organisms age because of the "selection shadow"-the decline of the force of natural selection with age. Seemingly straightforward corollary of this theory is the Medawar-Williams prediction, which maintains that increased extrinsic (non-aging) mortality will result in the evolution of accelerated aging and decreased longevity. Despite its centrality to modern thinking about the ultimate causes of aging, this prediction ignores the fact that mortality is often a non-random process depending on individual condition. Increased condition-dependent mortality inescapably results in increased selection for resistance against the agent of mortality. Provided that resistance to various stressors is commonly associated with increased longevity, the evolutionary outcome is no longer certain. We recently documented this experimentally by showing that populations of Caenorhabditis remanei evolved to live shorter under high extrinsic mortality, but only when mortality was applied haphazardly. On the contrary, when extrinsic mortality was caused by heat-shock, populations experiencing the same rate of increased mortality evolved greater longevities, notwithstanding increased "selection shadow." Intriguingly, stress-resistant and long-lived worms were also more fecund. We discuss these results in the light of recent theoretical developments, such as condition-environment interactions and hyperfunction theory of aging.

8.
Curr Biol ; 22(22): 2140-3, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23084993

ABSTRACT

Aging affects nearly all organisms, but how aging evolves is still unclear. The central prediction of classic theory is that high extrinsic mortality leads to accelerated aging and shorter intrinsic life span. However, this prediction considers mortality as a random process, whereas mortality in nature is likely to be condition dependent. Therefore, the novel theory maintains that condition dependence may dramatically alter, and even reverse, the classic pattern. We present experimental evidence for the evolution of longer life span under high condition-dependent mortality. We employed an experimental evolution design, using a nematode, Caenorhabditis remanei, that allowed us to disentangle the effects of mortality rate (high versus low) and mortality source (random versus condition dependent). We observed the evolution of shorter life span under high random mortality, confirming the classic prediction. In contrast, high condition-dependent mortality led to the evolution of longer life span, supporting a key role of condition dependence in the evolution of aging. This life-span extension was not the result of a trade-off with reproduction. By simultaneously corroborating the classic results [8-10] and providing the first experimental evidence for the novel theory, our study resolves apparent contradictions in the study of aging and challenges the traditional paradigm by demonstrating that condition-environment interactions dictate the evolutionary trajectory of aging.


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Longevity/physiology , Adaptation, Physiological/genetics , Animals , Biological Evolution , Models, Genetic , Mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...