Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Sci Transl Med ; 15(717): eadd2712, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37820006

ABSTRACT

Cancer immunotherapy has reshaped the landscape of cancer treatment. However, its efficacy is still limited by tumor immunosuppression associated with the excessive production of lactate by cancer cells. Although extensive efforts have been made to reduce lactate concentrations through inhibition of lactate dehydrogenase, such inhibitors disrupt the metabolism of healthy cells, causing severe nonspecific toxicity. We report herein a nanocapsule enzyme therapeutic based on lactate oxidase, which reduces lactate concentrations and releases immunostimulatory hydrogen peroxide, averting tumor immunosuppression and improving the efficacy of immune checkpoint blockade treatment. As demonstrated in a murine melanoma model and a humanized mouse model of triple-negative breast cancer, this enzyme therapeutic affords an effective tool toward more effective cancer immunotherapy.


Subject(s)
Melanoma , Nanocapsules , Animals , Mice , T-Lymphocytes , Immunotherapy , Melanoma/therapy , Lactates , Tumor Microenvironment
2.
Heliyon ; 9(9): e19435, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37810095

ABSTRACT

Selective T-cell depletion prior to cell or organ transplantation is considered a preconditioning regimen to induce tolerance and immunosuppression. An immunotoxin consisting of a recombinant anti-CD3 antibody conjugated with diphtheria toxin was used to eliminate T-cells. It showed significant T-cell depletion activity in the peripheral blood and lymph nodes in animal models used in previous studies. To date, a comprehensive evaluation of T-cell depletion and CD3 proliferation for all lymphoid tissues has not been conducted. Here, two rhesus macaques were administered A-dmDT390-SCFBdb (CD3-IT) intravenously at 25 µg/kg twice daily for four days. Samples were collected one day prior to and four days post administration. Flow cytometry and immunofluorescence staining were used to evaluate treatment efficiency accurately. Our preliminary results suggest that CD3-IT treatment may induce higher depletion of CD3 and CD4 T-cells in the lymph nodes and spleen, but is ineffective in the colon and thymus. The data showed a better elimination tendency of CD4 T-cells in the B-cell zone relative to the germinal center in the lymph nodes. Further, CD3-IT treatment may lead to a reduction in germinal center T follicular helper CD4 cells in the lymph nodes compared to healthy controls. The number of proliferating CD3 T-cell indicated that repopulation in different lymphoid tissues may occur four days post treatment. Our results provide insights into the differential efficacy of CD3-IT treatment and T-cell proliferation post treatment in different lymphoid tissues. Overall, CD3-IT treatment shows potential efficacy in depleting T-cells in the periphery, lymph nodes, and spleen, making it a viable preconditioning regimen for cell or organ transplantation. Our pilot study provides critical descriptive statistics and can contribute to the design of larger future studies.

3.
Front Immunol ; 13: 926696, 2022.
Article in English | MEDLINE | ID: mdl-36248834

ABSTRACT

Cannabis (Cannabis sativa) is a widely used drug in the United States and the frequency of cannabis use is particularly high among people living with HIV (PLWH). One key component of cannabis, the non-psychotropic (-)-cannabidiol (CBD) exerts a wide variety of biological actions, including anticonvulsive, analgesic, and anti-inflammatory effects. However, the exact mechanism of action through which CBD affects the immune cell signaling remains poorly understood. Here we report that CBD modulates type I interferon responses in human macrophages. Transcriptomics analysis shows that CBD treatment significantly attenuates cGAS-STING-mediated activation of type I Interferon response genes (ISGs) in monocytic THP-1 cells. We further showed that CBD treatment effectively attenuates 2'3-cGAMP stimulation of ISGs in both THP-1 cells and primary human macrophages. Interestingly, CBD significantly upregulates expression of autophagy receptor p62/SQSTM1. p62 is critical for autophagy-mediated degradation of stimulated STING. We observed that CBD treated THP-1 cells have elevated autophagy activity. Upon 2'3'-cGAMP stimulation, CBD treated cells have rapid downregulation of phosphorylated-STING, leading to attenuated expression of ISGs. The CBD attenuation of ISGs is reduced in autophagy deficient THP-1 cells, suggesting that the effects of CBD on ISGs is partially mediated by autophagy induction. Lastly, CBD decreases ISGs expression upon HIV infection in THP-1 cells and human primary macrophages, leading to increased HIV RNA expression 24 hours after infection. However, long term culture with CBD in infected primary macrophages reduced HIV viral spread, suggesting potential dichotomous roles of CBD in HIV replication. Our study highlights the immune modulatory effects of CBD and the needs for additional studies on its effect on viral infection and inflammation.


Subject(s)
Cannabidiol , HIV Infections , Interferon Type I , Anti-Inflammatory Agents , Cannabidiol/pharmacology , HIV Infections/drug therapy , Humans , Macrophages , Nucleotidyltransferases , RNA , Sequestosome-1 Protein
4.
Front Immunol ; 13: 877682, 2022.
Article in English | MEDLINE | ID: mdl-35967430

ABSTRACT

Chimeric-antigen receptor (CAR) T-cell immunotherapy employs autologous-T cells modified with an antigen-specific CAR. Current CAR-T manufacturing processes tend to yield products dominated by effector T cells and relatively small proportions of long-lived memory T cells. Those few cells are a so-called stem cell memory T (TSCM) subset, which express naïve T-cell markers and are capable of self-renewal and oligopotent differentiation into effector phenotypes. Increasing the proportion of this subset may lead to more effective therapies by improving CAR-T persistence; however, there is currently no standardized protocol for the effective generation of CAR-TSCM cells. Here we present a simplified protocol enabling efficient derivation of gene-modified TSCM cells: Stimulation of naïve CD8+ T cells with only soluble anti-CD3 antibody and culture with IL-7 and IL-15 was sufficient for derivation of CD8+ T cells harboring TSCM phenotypes and oligopotent capabilities. These in-vitro expanded TSCM cells were engineered with CARs targeting the HIV-1 envelope protein as well as the CD19 molecule and demonstrated effector activity both in vitro and in a xenograft mouse model. This simple protocol for the derivation of CAR-TSCM cells may facilitate improved adoptive immunotherapy.


Subject(s)
Receptors, Chimeric Antigen , Animals , Antigens, CD19/metabolism , CD8-Positive T-Lymphocytes , Humans , Immunotherapy, Adoptive/methods , Mice , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen/genetics
5.
Stem Cell Res Ther ; 12(1): 528, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620229

ABSTRACT

BACKGROUND: Current understanding of hematopoiesis is largely derived from mouse models that are physiologically distant from humans. Humanized mice provide the most physiologically relevant small animal model to study human diseases, most notably preclinical gene therapy studies. However, the clonal repopulation dynamics of human hematopoietic stem and progenitor cells (HSPC) in these animal models is only partially understood. Using a new clonal tracking methodology designed for small sample volumes, we aim to reveal the underlying clonal dynamics of human cell repopulation in a mouse environment. METHODS: Humanized bone marrow-liver-thymus (hu-BLT) mice were generated by transplanting lentiviral vector-transduced human fetal liver HSPC (FL-HSPC) in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice implanted with a piece of human fetal thymus. We developed a methodology to track vector integration sites (VIS) in a mere 25 µl of mouse blood for longitudinal and quantitative clonal analysis of human HSPC repopulation in mouse environment. We explored transcriptional and epigenetic features of human HSPC for possible VIS bias. RESULTS: A total of 897 HSPC clones were longitudinally tracked in hu-BLT mice-providing a first-ever demonstration of clonal dynamics and coordinated expansion of therapeutic and control vector-modified human cell populations simultaneously repopulating in the same humanized mice. The polyclonal repopulation stabilized at 19 weeks post-transplant and the contribution of the largest clone doubled within 4 weeks. Moreover, 550 (~ 60%) clones persisted over 6 weeks and were highly shared between different organs. The normal clonal profiles confirmed the safety of our gene therapy vectors. Multi-omics analysis of human FL-HSPC revealed that 54% of vector integrations in repopulating clones occurred within ± 1 kb of H3K36me3-enriched regions. CONCLUSIONS: Human repopulation in mice is polyclonal and stabilizes more rapidly than that previously observed in humans. VIS preference for H3K36me3 has no apparent negative effects on HSPC repopulation. Our study provides a methodology to longitudinally track clonal repopulation in small animal models extensively used for stem cell and gene therapy research and with lentiviral vectors designed for clinical applications. Results of this study provide a framework for understanding the clonal behavior of human HPSC repopulating in a mouse environment, critical for translating results from humanized mice models to the human settings.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Animals , Disease Models, Animal , Hematopoiesis , Humans , Mice , Mice, Inbred NOD , Mice, SCID
6.
PLoS Pathog ; 17(8): e1009895, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34460861

ABSTRACT

[This corrects the article DOI: 10.1371/journal.ppat.1009404.].

7.
PLoS Pathog ; 17(7): e1009738, 2021 07.
Article in English | MEDLINE | ID: mdl-34283885

ABSTRACT

Broadly neutralizing antibodies (bNAbs) directed to HIV-1 have shown promise at suppressing viremia in animal models. However, the use of bNAbs for the central nervous system (CNS) infection is confounded by poor penetration of the blood brain barrier (BBB). Typically, antibody concentrations in the CNS are extremely low; with levels in cerebrospinal fluid (CSF) only 0.1% of blood concentrations. Using a novel nanotechnology platform, which we term nanocapsules, we show effective transportation of the human bNAb PGT121 across the BBB in infant rhesus macaques upon systemic administration up to 1.6% of plasma concentration. We demonstrate that a single dose of PGT121 encased in nanocapsules when delivered at 48h post-infection delays early acute infection with SHIVSF162P3 in infants, with one of four animals demonstrating viral clearance. Importantly, the nanocapsule delivery of PGT121 improves suppression of SHIV infection in the CNS relative to controls.


Subject(s)
Antibodies, Viral/administration & dosage , Brain/virology , Broadly Neutralizing Antibodies/administration & dosage , Simian Acquired Immunodeficiency Syndrome/virology , Viral Load/drug effects , Animals , Animals, Newborn , Blood-Brain Barrier , Brain/drug effects , Humans , Macaca mulatta , Nanocapsules , Simian Immunodeficiency Virus
8.
Materials (Basel) ; 14(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063959

ABSTRACT

A novel calcium carbonate cement system that mimics the naturally occurring mineralization process of carbon dioxide to biogenic or geologic calcium carbonate deposits was developed utilizing carbon dioxide-containing flue gas and high-calcium industrial solid waste as raw materials. The calcium carbonate cement reaction is based on the polymorphic transformation from metastable vaterite to aragonite and can achieve >40 MPa compressive strength. Due to its unique properties, the calcium carbonate cement is well suited for building materials applications with controlled factory manufacturing processes that can take advantage of its rapid curing at elevated temperatures and lower density for competitive advantages. Examples of suitable applications are lightweight fiber cement board and aerated concrete. The new cement system described is an environmentally sustainable alternative cement that can be carbon negative, meaning more carbon dioxide is captured during its manufacture than is emitted.

9.
PLoS Pathog ; 17(4): e1009404, 2021 04.
Article in English | MEDLINE | ID: mdl-33793675

ABSTRACT

Due to the durability and persistence of reservoirs of HIV-1-infected cells, combination antiretroviral therapy (ART) is insufficient in eradicating infection. Achieving HIV-1 cure or sustained remission without ART treatment will require the enhanced and persistent effective antiviral immune responses. Chimeric Antigen Receptor (CAR) T-cells have emerged as a powerful immunotherapy and show promise in treating HIV-1 infection. Persistence, trafficking, and maintenance of function remain to be a challenge in many of these approaches, which are based on peripheral T cell modification. To overcome many of these issues, we have previously demonstrated successful long-term engraftment and production of anti-HIV CAR T cells in modified hematopoietic stem cells (HSCs) in vivo. Here we report the development and in vivo testing of second generation CD4-based CARs (CD4CAR) against HIV-1 infection using a HSCs-based approach. We found that a modified, truncated CD4-based CAR (D1D2CAR) allows better CAR-T cell differentiation from gene modified HSCs, and maintains similar CTL activity as compared to the full length CD4-based CAR. In addition, D1D2CAR does not mediate HIV infection or stimulation mediated by IL-16, suggesting lower risk of off-target effects. Interestingly, stimulatory domains of 4-1BB but not CD28 allowed successful hematopoietic differentiation and improved anti-viral function of CAR T cells from CAR modified HSCs. Addition of 4-1BB to CD4 based CARs led to faster suppression of viremia during early untreated HIV-1 infection. D1D2CAR 4-1BB mice had faster viral suppression in combination with ART and better persistence of CAR T cells during ART. In summary, our data indicate that the D1D2CAR-41BB is a superior CAR, showing better HSC differentiation, viral suppression and persistence, and less deleterious functions compared to the original CD4CAR, and should continue to be pursued as a candidate for clinical study.


Subject(s)
HIV Infections/virology , Hematopoietic Stem Cells/cytology , Lymphocyte Activation , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , Animals , HIV Infections/immunology , HIV-1/immunology , Hematopoietic Stem Cells/immunology , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use
10.
J Immunother Cancer ; 9(2)2021 02.
Article in English | MEDLINE | ID: mdl-33593826

ABSTRACT

BACKGROUND: Despite the numerous applications of monoclonal antibodies (mAbs) in cancer therapeutics, animal models available to test the therapeutic efficacy of new mAbs are limited. NOD.Cg-Prkdcscid Il2rg tm1Wjl /SzJ (NSG) mice are one of the most highly immunodeficient strains and are universally used as a model for testing cancer-targeting mAbs. However, this strain lacks several factors necessary to fully support antibody-mediated effector functions-including antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity (CDC)-due to the absence of immune cells as well as a mutation in the Hc gene, which is needed for a functional complement system. METHODS: We have developed a humanized mouse model using a novel NSG strain, NOD.Cg-Hc1Prkdcscid Il2rgtm1Wjl/SzJ (NSG-Hc1), which contains the corrected mutation in the Hc gene to support CDC in addition to other mechanisms endowed by humanization. With this model, we reevaluated the anticancer efficacies of nanoencapsulated rituximab after xenograft of the human Burkitt lymphoma cell line 2F7-BR44. RESULTS: As expected, xenografted humanized NSG-Hc1 mice supported superior lymphoma clearance of native rituximab compared with the parental NSG strain. Nanoencapsulated rituximab with CXCL13 conjugation as a targeting ligand for lymphomas further enhanced antilymphoma activity in NSG-Hc1 mice and, more importantly, mediated antilymphoma cellular responses. CONCLUSIONS: These results indicate that NSG-Hc1 mice can serve as a feasible model for both studying antitumor treatment using cancer targeting as well as understanding induction mechanisms of antitumor cellular immune response.


Subject(s)
Burkitt Lymphoma/drug therapy , Chemokines, CXC/chemistry , Rituximab/administration & dosage , Animals , Burkitt Lymphoma/genetics , Burkitt Lymphoma/immunology , Cell Line, Tumor , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Nanocapsules , Neoplasm Metastasis , Rituximab/chemistry , Rituximab/pharmacology , Treatment Outcome , Xenograft Model Antitumor Assays
11.
JCI Insight ; 6(1)2021 01 11.
Article in English | MEDLINE | ID: mdl-33427210

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) with CCR5- donor cells is the only treatment known to cure HIV-1 in patients with underlying malignancy. This is likely due to a donor cell-mediated graft-versus-host effect targeting HIV reservoirs. Allo-HSCT would not be an acceptable therapy for most people living with HIV due to the transplant-related side effects. Chimeric antigen receptor (CAR) immunotherapies specifically traffic to malignant lymphoid tissues (lymphomas) and, in some settings, are able to replace allo-HSCT. Here, we quantified the engraftment of HSC-derived, virus-directed CAR T cells within HIV reservoirs in a macaque model of HIV infection, using potentially novel IHC assays. HSC-derived CAR cells trafficked to and displayed multilineage engraftment within tissue-associated viral reservoirs, persisting for nearly 2 years in lymphoid germinal centers, the brain, and the gastrointestinal tract. Our findings demonstrate that HSC-derived CAR+ cells reside long-term and proliferate in numerous tissues relevant for HIV infection and cancer.


Subject(s)
HIV Infections/immunology , HIV Infections/therapy , Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Animals , Cell Lineage/immunology , Disease Models, Animal , Disease Reservoirs/virology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/pathology , Gastrointestinal Tract/virology , Germinal Center/immunology , Germinal Center/pathology , Germinal Center/virology , HIV Infections/virology , HIV-1 , Humans , Immunohistochemistry , Macaca nemestrina , Male , Receptors, Chimeric Antigen/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Acquired Immunodeficiency Syndrome/virology , Transplantation, Homologous
12.
Sci Adv ; 6(30): eaay9206, 2020 07.
Article in English | MEDLINE | ID: mdl-32766447

ABSTRACT

Despite advances in hematopoietic stem/progenitor cell (HSPC) transplant for HIV-1-infected patients, the impact of a preexisting HIV-1 infection on the engraftment and clonal repopulation of HSPCs remains poorly understood. We have developed a long terminal repeat indexing-mediated integration site sequencing (LTRi-Seq) method that provides a multiplexed clonal quantitation of both anti-HIV-1 RNAi (RNA interference) gene-modified and control vector-modified cell populations, together with HIV-1-infected cells-all within the same animal. In our HIV-1-preinfected humanized mice, both therapeutic and control HSPCs repopulated efficiently without abnormalities. Although the HIV-1-mediated selection of anti-HIV-1 RNAi-modified clones was evident in HIV-1-infected mice, the organ-to-organ and intra-organ clonal distributions in infected mice were indistinguishable from those in uninfected mice. HIV-1-infected cells showed clonal patterns distinct from those of HSPCs. Our data demonstrate that, despite the substantial impact of HIV-1 infection on CD4+ T cells, HSPC repopulation remains polyclonal, thus supporting the use of HSPC transplant for anti-HIV treatment.


Subject(s)
HIV Infections , HIV-1 , Hematopoietic Stem Cell Transplantation , Animals , HIV Infections/genetics , HIV Infections/therapy , HIV-1/genetics , Hematopoietic Stem Cells , Humans , Mice , RNA Interference
13.
Sci Rep ; 9(1): 18836, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827170

ABSTRACT

An in vitro-transcribed RNA aptamer (trans-RA16) that targets non-small cell lung cancer (NSCLC) was previously identified through in vivo SELEX. Trans-RA16 can specifically target and inhibit human NCI-H460 cells in vitro and xenograft tumors in vivo. Here, in a follow-up study, we obtained a chemically-synthesized version of this RNA aptamer (syn-RA16) and a truncated form, and compared them to trans-RA16 for abilities to target and inhibit NCI-H460 cells. The syn-RA16, preferred for drug development, was by design to differ from trans-RA16 in the extents of RNA modifications by biotin, which may affect RA16's anti-tumor effects. We observed aptamer binding to NCI-H460 cells with KD values of 24.75 ± 2.28 nM and 12.14 ± 1.46 nM for syn-RA16 and trans-RA16, respectively. Similar to trans-RA16, syn-RA16 was capable of inhibiting NCI-H460 cell viability in a dose-dependent manner. IC50 values were 118.4 nM (n = 4) for syn-RA16 and 105.7 nM (n = 4) for trans-RA16. Further studies using syn-RA16 demonstrated its internalization into NCI-H460 cells and inhibition of NCI-H460 cell growth. Moreover, in vivo imaging demonstrated the gradual accumulation of both syn-RA16 and trans-RA16 at the grafted tumor site, and qRT-PCR showed high retention of syn-RA16 in tumor tissues. In addition, a truncated fragment of trans-RA16 (S3) was identified, which exhibited binding affinity for NCI-H460 cells with a KD value of 63.20 ± 0.91 nM and inhibited NCI-H460 cell growth by 39.32 ± 3.25% at 150 nM. These features of the syn-RA16 and S3 aptamers should facilitate the development of a novel diagnostic or treatment approach for NSCLC in clinical settings.


Subject(s)
Aptamers, Nucleotide/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Proliferation , Lung Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Aptamers, Nucleotide/pharmacology , Carcinoma, Non-Small-Cell Lung/physiopathology , Cell Line, Tumor , Cell Survival , Female , Humans , Lung Neoplasms/physiopathology , Mice , Mice, Nude , Xenograft Model Antitumor Assays
14.
Adv Mater ; 31(39): e1902469, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31402525

ABSTRACT

Cells transport mass dynamically, crossing cell membranes to maintain metabolism and systemic homeostasis, through which biomolecules are also delivered to cells for gene editing, cell reprograming, therapy, and other purposes. Quantifying the translocation kinetics is fundamentally and clinically essential, but remains limited by fluorescence-based technologies, which are semi-quantitative and only provide kinetics information at cellular level or in discrete time. Herein, a real-time method of quantifying cell internalization kinetics is reported using functionalized firefly-luciferase nanocapsules as the probe. This quantitative assay will facilitate the rational design of delivery vectors and enable high-throughput screening of peptides and other functional molecules, constituting an effective tool for broad applications, including drug development and cancer therapy.


Subject(s)
Luciferases, Firefly/chemistry , Luciferases, Firefly/metabolism , Luminescent Agents/chemistry , Luminescent Agents/metabolism , Nanocapsules/chemistry , Animals , Cell Line, Tumor , Kinetics , Mice , Protein Transport
15.
Nat Biomed Eng ; 3(9): 706-716, 2019 09.
Article in English | MEDLINE | ID: mdl-31384008

ABSTRACT

Approximately 15-40% of all cancers develop metastases in the central nervous system (CNS), yet few therapeutic options exist to treat them. Cancer therapies based on monoclonal antibodies are widely successful, yet have limited efficacy against CNS metastases, owing to the low levels of the drug reaching the tumour site. Here, we show that the encapsulation of rituximab within a crosslinked zwitterionic polymer layer leads to the sustained release of rituximab as the crosslinkers are gradually hydrolysed, enhancing the CNS levels of the antibody by approximately tenfold with respect to the administration of naked rituximab. When the nanocapsules were functionalized with CXCL13-the ligand for the chemokine receptor CXCR5, which is frequently found on B-cell lymphoma-a single dose led to improved control of CXCR5-expressing metastases in a murine xenograft model of non-Hodgkin lymphoma, and eliminated lymphoma in a xenografted humanized bone marrow-liver-thymus mouse model. Encapsulation and molecular targeting of therapeutic antibodies could become an option for the treatment of cancers with CNS metastases.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Central Nervous System , Drug Delivery Systems/methods , Lymphoma, B-Cell/drug therapy , Molecular Targeted Therapy/methods , Rituximab/pharmacology , Animals , Brain , Chemokine CXCL13/drug effects , Chemokine CXCL13/metabolism , Disease Models, Animal , Lymphatic Metastasis/drug therapy , Lymphoma, Non-Hodgkin/drug therapy , Mice , Nanocapsules , Receptors, CXCR5/drug effects , Receptors, CXCR5/metabolism , Xenograft Model Antitumor Assays
16.
Adv Mater ; 31(33): e1900727, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31125138

ABSTRACT

The central nervous system (CNS) plays a central role in the control of sensory and motor functions, and the disruption of its barriers can result in severe and debilitating neurological disorders. Neurotrophins are promising therapeutic agents for neural regeneration in the damaged CNS. However, their penetration across the blood-brain barrier remains a formidable challenge, representing a bottleneck for brain and spinal cord therapy. Herein, a nanocapsule-based delivery system is reported that enables intravenously injected nerve growth factor (NGF) to enter the CNS in healthy mice and nonhuman primates. Under pathological conditions, the delivery of NGF enables neural regeneration, tissue remodeling, and functional recovery in mice with spinal cord injury. This technology can be utilized to deliver other neurotrophins and growth factors to the CNS, opening a new avenue for tissue engineering and the treatment of CNS disorders and neurodegenerative diseases.


Subject(s)
Blood-Brain Barrier/metabolism , Nanocapsules/chemistry , Nerve Growth Factors/pharmacology , Nerve Regeneration/drug effects , Spinal Cord Injuries/drug therapy , Acrylic Resins/chemistry , Animals , Biocompatible Materials/chemistry , Blood-Brain Barrier/ultrastructure , Cross-Linking Reagents/chemistry , Drug Liberation , Injections, Intravenous , Macaca mulatta , Methacrylates/chemistry , Mice, Inbred BALB C , Nerve Growth Factors/administration & dosage , Nerve Growth Factors/blood , Nerve Growth Factors/cerebrospinal fluid , PC12 Cells , Permeability , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Polyesters/chemistry , Rats , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology
17.
Adv Mater ; 31(19): e1805697, 2019 May.
Article in English | MEDLINE | ID: mdl-30773720

ABSTRACT

As an essential component of immunotherapy, monoclonal antibodies (mAbs) have emerged as a class of powerful therapeutics for treatment of a broad range of diseases. For central nervous system (CNS) diseases, however, the efficacy remains limited due to their inability to enter the CNS. A platform technology is reported here that enables effective delivery of mAbs to the CNS for brain tumor therapy. This is achieved by encapsulating the mAbs within nanocapsules that contain choline and acetylcholine analogues; such analogues facilitate the penetration of the nanocapsules through the brain-blood barrier and the delivery of mAbs to tumor sites. This platform technology uncages the therapeutic power of mAbs for various CNS diseases that remain poorly treated.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Antineoplastic Agents/pharmacokinetics , Brain Neoplasms/drug therapy , Central Nervous System/drug effects , Nanocapsules/chemistry , Acetylcholine/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Blood-Brain Barrier/drug effects , Brain , Choline/metabolism , Cross-Linking Reagents/chemistry , Drug Liberation , Humans , Immunotherapy/methods , Male , Mice, Inbred BALB C , Particle Size , Permeability , Phosphorylcholine/chemistry
18.
Adv Mater ; 31(18): e1807557, 2019 May.
Article in English | MEDLINE | ID: mdl-30803073

ABSTRACT

Central nervous system (CNS) diseases are the leading cause of morbidity and mortality; their treatment, however, remains constrained by the blood-brain barrier (BBB) that impedes the access of most therapeutics to the brain. A CNS delivery platform for protein therapeutics, which is achieved by encapsulating the proteins within nanocapsules that contain choline and acetylcholine analogues, is reported herein. Mediated by nicotinic acetylcholine receptors and choline transporters, such nanocapsules can effectively penetrate the BBB and deliver the therapeutics to the CNS, as demonstrated in mice and non-human primates. This universal platform, in general, enables the delivery of any protein therapeutics of interest to the brain, opening a new avenue for the treatment of CNS diseases.


Subject(s)
Central Nervous System Diseases/drug therapy , Drug Carriers/chemistry , Proteins/chemistry , Animals , Blood-Brain Barrier/metabolism , Central Nervous System Diseases/veterinary , Mice , Nanocapsules/chemistry , Nerve Growth Factor/chemistry , Nerve Growth Factor/metabolism , Nerve Growth Factor/therapeutic use , PC12 Cells , Polymers/chemistry , Primates , Proteins/metabolism , Proteins/therapeutic use , Rats , Rituximab/chemistry , Rituximab/metabolism , Rituximab/therapeutic use
19.
Front Immunol ; 10: 3132, 2019.
Article in English | MEDLINE | ID: mdl-32047498

ABSTRACT

Tumor metastasis into the central nervous system (CNS) and lymph nodes (LNs) is a major obstacle for effective therapies. Therapeutic monoclonal antibodies (mAb) have revolutionized tumor treatment; however, their efficacy for treating metastatic tumors-particularly, CNS and LN metastases-is poor due to inefficient penetration into the CNS and LNs following intravenous injection. We recently reported an effective delivery of mAb to the CNS by encapsulating the anti-CD20 mAb rituximab (RTX) within a thin shell of polymer that contains the analogs of choline and acetylcholine receptors. This encapsulated RTX, denoted as n-RTX, eliminated lymphoma cells systemically in a xenografted humanized mouse model using an immunodeficient mouse as a recipient of human hematopoietic stem/progenitor cells and fetal thymus more effectively than native RTX; importantly, n-RTX showed notable anti-tumor effect on CNS metastases which is unable to show by native RTX. As an important step toward future clinical translation of this technology, we further analyzed the properties of n-RTX in immunocompetent animals, rats, and non-human primates (NHPs). Our results show that a single intravenous injection of n-RTX resulted in 10-fold greater levels in the CNS and 2-3-fold greater levels in the LNs of RTX, respectively, than the injection of native RTX in both rats and NHPs. In addition, we demonstrate the enhanced delivery and efficient B-cell depletion in lymphoid organs of NHPs with n-RTX. Moreover, detailed hematological analysis and liver enzyme activity tests indicate n-RTX treatment is safe in NHPs. As this nanocapsule platform can be universally applied to other therapeutic mAbs, it holds great promise for extending mAb therapy to poorly accessible body compartments.


Subject(s)
Antineoplastic Agents, Immunological/pharmacokinetics , Brain , Lymph Nodes , Nanocapsules , Rituximab/pharmacokinetics , Animals , Delayed-Action Preparations , Lymph Nodes/drug effects , Macaca mulatta , Male , Nanocapsules/chemistry , Rats , Rats, Sprague-Dawley
20.
PLoS Comput Biol ; 14(10): e1006489, 2018 10.
Article in English | MEDLINE | ID: mdl-30335762

ABSTRACT

In a recent clone-tracking experiment, millions of uniquely tagged hematopoietic stem cells (HSCs) and progenitor cells were autologously transplanted into rhesus macaques and peripheral blood containing thousands of tags were sampled and sequenced over 14 years to quantify the abundance of hundreds to thousands of tags or "clones." Two major puzzles of the data have been observed: consistent differences and massive temporal fluctuations of clone populations. The large sample-to-sample variability can lead clones to occasionally go "extinct" but "resurrect" themselves in subsequent samples. Although heterogeneity in HSC differentiation rates, potentially due to tagging, and random sampling of the animals' blood and cellular demographic stochasticity might be invoked to explain these features, we show that random sampling cannot explain the magnitude of the temporal fluctuations. Moreover, we show through simpler neutral mechanistic and statistical models of hematopoiesis of tagged cells that a broad distribution in clone sizes can arise from stochastic HSC self-renewal instead of tag-induced heterogeneity. The very large clone population fluctuations that often lead to extinctions and resurrections can be naturally explained by a generation-limited proliferation constraint on the progenitor cells. This constraint leads to bursty cell population dynamics underlying the large temporal fluctuations. We analyzed experimental clone abundance data using a new statistic that counts clonal disappearances and provided least-squares estimates of two key model parameters in our model, the total HSC differentiation rate and the maximum number of progenitor-cell divisions.


Subject(s)
Hematopoiesis/physiology , Hematopoietic Stem Cells , Models, Biological , Animals , Cell Differentiation/physiology , Cell Tracking , Clone Cells/cytology , Clone Cells/physiology , Computational Biology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/physiology , Macaca mulatta
SELECTION OF CITATIONS
SEARCH DETAIL
...