Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 912: 169428, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38104815

ABSTRACT

Wearing masks to prevent infectious diseases, especially during the COVID-19 pandemic, is common. However, concerns arise about inhalation exposure to microplastics (MPs) when disposable masks are improperly reused. In this study, we assessed whether disposable masks release inhalable MPs when reused in simulated wearing conditions. All experiments were conducted using a controlled test chamber setup with a constant inspiratory flow. Commercially available medical masks with a three-layer material, composition comprising polypropylene (PP in the outer and middle layers) and polyethylene (PE in the inner layer), were used as the test material. Brand-new masks with and without hand rubbing, as well as reused medical masks, were tested. Physical properties (number, size, and shape) and chemical composition (polymers) were identified using various analytical techniques such as fluorescence staining, fluorescence microscopy, and micro-Fourier Transform Infrared Spectroscopy (µFTIR). Scanning Electron Microscopy (SEM) was used to scrutinize the surface structure of reused masks across different layers, elucidating the mechanism behind the MP generation. The findings revealed that brand-new masks subjected to hand rubbing exhibited a higher cumulative count of MPs, averaging approximately 1.5 times more than those without hand rubbing. Fragments remained the predominant shape across all selected size classes among the released MPs from reused masks, primarily through a physical abrasion mechanism, accounting for >90 % of the total MPs. The numbers of PE particles were higher than PP particles, indicating that the inner layer of the mask contributed more inhalable MPs than the middle and outer layers combined. The released MPs from reused masks reached their peak after 8 h of wearing. This implies that regularly replacing masks serves as a preventive measure and mitigates associated health risks of inhalation exposure to MPs.


Subject(s)
Inhalation Exposure , Water Pollutants, Chemical , Humans , Inhalation Exposure/prevention & control , Masks , Microplastics , Pandemics , Plastics , Polyethylene
2.
Nanomaterials (Basel) ; 13(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37947667

ABSTRACT

Nuclear fission reactions can release massive amounts of energy accompanied by neutrons and γ photons, which create a mixed radiation field and enable a series of reactions in nuclear reactors. This study demonstrates a one-pot/one-step approach to synthesizing radioactive gold nanoparticles (RGNP) without using radioactive precursors and reducing agents. Trivalent gold ions are reduced into gold nanoparticles (8.6-146 nm), and a particular portion of 197Au atoms is simultaneously converted to 198Au atoms, rendering the nanoparticles radioactive. We suggest that harnessing nuclear energy to gold nanoparticles is feasible in the interests of advancing nanotechnology for cancer therapy. A combination of RGNP applied through convection-enhanced delivery (CED) and temozolomide (TMZ) through oral administration demonstrates the synergistic effect in treating glioblastoma-bearing mice. The mean survival for RGNP/TMZ treatment was 68.9 ± 9.7 days compared to that for standalone RGNP (38.4 ± 2.2 days) or TMZ (42.8 ± 2.5 days) therapies. Based on the verification of bioluminescence images, positron emission tomography, and immunohistochemistry inspection, the combination treatment can inhibit the proliferation of glioblastoma, highlighting the niche of concurrent chemoradiotherapy (CCRT) attributed to RGNP and TMZ.

3.
Int J Mol Sci ; 24(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003601

ABSTRACT

Hemophilia is a genetic disorder linked to the sex chromosomes, resulting in impaired blood clotting due to insufficient intrinsic coagulation factors. There are approximately one million individuals worldwide with hemophilia, with hemophilia A being the most prevalent form. The current treatment for hemophilia A involves the administration of clotting factor VIII (FVIII) through regular and costly injections, which only provide temporary relief and pose inconveniences to patients. In utero transplantation (IUT) is an innovative method for addressing genetic disorders, taking advantage of the underdeveloped immune system of the fetus. This allows mesenchymal stromal cells to play a role in fetal development and potentially correct genetic abnormalities. The objective of this study was to assess the potential recovery of coagulation disorders in FVIII knockout hemophilia A mice through the administration of human amniotic fluid mesenchymal stromal cells (hAFMSCs) via IUT at the D14.5 fetal stage. The findings revealed that the transplanted human cells exhibited fusion with the recipient liver, with a ratio of approximately one human cell per 10,000 mouse cells and produced human FVIII protein in the livers of IUT-treated mice. Hemophilia A pups born to IUT recipients demonstrated substantial improvement in their coagulation issues from birth throughout the growth period of up to 12 weeks of age. Moreover, FVIII activity reached its peak at 6 weeks of age, while the levels of FVIII inhibitors remained relatively low during the 12-week testing period in mice with hemophilia. In conclusion, the results indicated that prenatal intrahepatic therapy using hAFMSCs has the potential to improve clotting issues in FVIII knockout mice, suggesting it as a potential clinical treatment for individuals with hemophilia A.


Subject(s)
Hemophilia A , Hemostatics , Mesenchymal Stem Cells , Pregnancy , Female , Humans , Mice , Animals , Infant , Hemophilia A/genetics , Hemophilia A/therapy , Amniotic Fluid/metabolism , Factor VIII/genetics , Factor VIII/metabolism , Hemostatics/metabolism , Mice, Knockout , Mesenchymal Stem Cells/metabolism
4.
Int J Biol Sci ; 19(9): 2897-2913, 2023.
Article in English | MEDLINE | ID: mdl-37324951

ABSTRACT

Vaccines are a powerful medical intervention for preventing epidemic diseases. Efficient inactivated or protein vaccines typically rely on an effective adjuvant to elicit an immune response and boost vaccine activity. In this study, we investigated the adjuvant activities of combinations of Toll-like receptor 9 (TLR9) and stimulator of interferon genes (STING) agonists in a SARS-CoV-2 receptor binding domain protein vaccine. Adjuvants formulated with a TLR9 agonist, CpG-2722, with various cyclic dinucleotides (CDNs) that are STING agonists increased germinal center B cell response and elicited humoral immune responses in immunized mice. An adjuvant containing CpG-2722 and 2'3'-c-di-AM(PS)2 effectively boosted the immune response to both intramuscularly and intranasally administrated vaccines. Vaccines adjuvanted with CpG-2722 or 2'3'-c-di-AM(PS)2 alone were capable of inducing an immune response, but a cooperative adjuvant effect was observed when both were combined. CpG-2722 induced antigen-dependent T helper (Th)1 and Th17 responses, while 2'3'-c-di-AM(PS)2 induced a Th2 response. The combination of CpG-2722 and 2'3'-c-di-AM(PS)2 generated a distinct antigen-dependent Th response profile characterized by higher Th1 and Th17, but lower Th2 responses. In dendritic cells, CpG-2722 and 2'3'-c-di-AM(PS)2 showed a cooperative effect on inducing expression of molecules critical for T cell activation. CpG-2722 and 2'3'-c-di-AM(PS)2 have distinct cytokine inducing profiles in different cell populations. The combination of these two agonists enhanced the expression of cytokines for Th1 and Th17 responses and suppressed the expression of cytokines for Th2 response in these cells. Thus, the antigen-dependent Th responses observed in the animals immunized with different vaccines were shaped by the antigen-independent cytokine-inducing profiles of their adjuvant. The expanded targeting cell populations, the increased germinal center B cell response, and reshaped T helper responses are the molecular bases for the cooperative adjuvant effect of the combination of TLR9 and STING agonists.


Subject(s)
COVID-19 , Vaccines , Animals , Mice , COVID-19 Vaccines , Toll-Like Receptor 9/agonists , SARS-CoV-2 , Oligodeoxyribonucleotides/pharmacology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Cytokines , Immunity , Germinal Center
5.
Phytomedicine ; 116: 154860, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37201366

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) is upregulated in prostate cancer (PCa). However, suppression of EGFR did not improve the patient outcome, possibly due to the activation of PI3K/Akt signaling in PCa. Compounds able to suppress both PI3K/Akt and EGFR signaling may be effective for treating advanced PCa. PURPOSE: We examined if caffeic acid phenethyl ester (CAPE) simultaneously suppresses the EGFR and Akt signaling, migration and tumor growth in PCa cells. METHODS: Wound healing assay, transwell migration assay and xenograft mice model were used to determine the effects of CAPE on migration and proliferation of PCa cells. Western blot, immunoprecipitation, and immunohistochemistry staining were performed to determine the effects of CAPE on EGFR and Akt signaling. RESULTS: CAPE treatment decreased the gene expression of HRAS, RAF1, AKT2, GSK3A, and EGF and the protein expression of phospho-EGFR (Y845, Y1069, Y1148, Y1173), phospho-FAK, Akt, and ERK1/2 in PCa cells. CAPE treatment inhibited the EGF-induced migration of PCa cells. Combined treatment of CAPE with EGFR inhibitor gefitinib showed additive inhibition on migration and proliferation of PCa cells. Injection of CAPE (15 mg/kg/3 days) for 14 days suppressed the tumor growth of prostate xenografts in nude mice as well as suppressed the levels of Ki67, phospho-EGFR Y845, MMP-9, phospho-Akt S473, phospho-Akt T308, Ras, and Raf-1 in prostate xenografts. CONCLUSIONS: Our study suggested that CAPE can simultaneously suppress the EGFR and Akt signaling in PCa cells and is a potential therapeutic agent for advanced PCa.


Subject(s)
Phenylethyl Alcohol , Prostatic Neoplasms , Male , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Prostate/pathology , Phosphatidylinositol 3-Kinases/metabolism , Mice, Nude , Epidermal Growth Factor , Prostatic Neoplasms/pathology , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , ErbB Receptors , Phenylethyl Alcohol/pharmacology , Cell Line, Tumor , Cell Proliferation
6.
Am J Chin Med ; 51(4): 1019-1039, 2023.
Article in English | MEDLINE | ID: mdl-37120705

ABSTRACT

Prostate cancer (PCa) is the second most prevalent cancer in men worldwide. The majority of PCa incidences eventually progress to castration-resistant PCa (CRPC), thereby establishing an urgent need for new effective therapeutic strategies. This study aims to examine the effects of morusin, a prenylated flavonoid isolated from Morus alba L., on PCa progression and identify the regulatory mechanism of morusin. Cell growth, cell migration and invasion, and the expression of EMT markers were examined. Cycle progression and cell apoptosis were examined using flow cytometry and a TUNEL assay, while transcriptome analysis was performed using RNA-seq with results being further validated using real-time PCR and western blot. A xenograft PCa model was used to examine tumor growth. Our experimental results indicated that morusin significantly attenuated the growth of PC-3 and 22Rv1 human PCa cells; moreover, morusin significantly suppressed TGF-[Formula: see text]-induced cell migration and invasion and inhibited EMT in PC-3 and 22Rv1 cells. Significantly, morusin treatment caused cell cycle arrest at the G2/M phase and induced cell apoptosis in PC-3 and 22Rv1 cells. Morusin also attenuated tumor growth in a xenograft murine model. The results of RNA-seq indicated that morusin regulated PCa cells through the Akt/mTOR signaling pathway, while our western blot results confirmed that morusin suppressed phosphorylation of AKT, mTOR, p70S6K, and downregulation of the expression of Raptor and Rictor in vitro and in vivo. These results suggest that morusin has antitumor activities on regulating PCa progression, including migration, invasion, and formation of metastasis, and might be a potential drug for CRPC treatment.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Cell Line, Tumor , Signal Transduction/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Flavonoids/pharmacology , Flavonoids/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation/genetics , Apoptosis/genetics , Cell Movement
7.
Data Brief ; 47: 109004, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36909015

ABSTRACT

Air pollution has been linked to respiratory diseases, and urban air pollution can be attributed to a number of emission sources. The emitted particles and gases are the primary components of air pollution that enter the lungs during respiration. Particulate matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5) can deposit deep into the respiratory tract via inhalation and has been proposed as a causative agent for adverse respiratory health. In addition, the lung contains a diverse microbial community (microbiome) that maintains normal homeostasis and is significantly altered in a variety of pulmonary disorders. Air pollution, specifically PM2.5, has previously been shown to significantly alter the composition of the lower airway microbiome, which has been linked to decreased lung function in chronic obstructive pulmonary disease (COPD) patients. Surprisingly, the intestinal microbiome has also been implicated in the modulation of pulmonary inflammatory diseases. Therefore, dysbiosis of the lung and intestinal microbiomes pose significant negative effects on human health. This dataset describes the microbial community profiles of the lungs and intestines of ageing rats exposed to ambient unconcentrated traffic-related air pollution for three months. The whole-body exposure system was equipped with and without high efficiency particulate air (HEPA) filtration (gaseous vs. PM2.5 pollution). The data can provide valuable information on lung and intestinal microbiome changes, including that which was only found after traffic-related air pollution exposure.

9.
J Anat ; 242(3): 544-551, 2023 03.
Article in English | MEDLINE | ID: mdl-36256534

ABSTRACT

Bone has multiple functions in animals, such as supporting the body for mobility. The zebrafish skeleton is composed of craniofacial and axial skeletons. It shares a physiological curvature and consists of a similar number of vertebrae as humans. Bone degeneration and malformations have been widely studied in zebrafish as human disease models. High-resolution imaging and different bone properties such as density and volume can be obtained using micro-computed tomography (micro-CT). This study aimed to understand the possible changes in the structure and bone mineral density (BMD) of the vertebrae and craniofacial skeleton with age (4, 12 and 24 months post fertilisation [mpf]) in zebrafish. Our data showed that the BMD in the vertebrae and specific craniofacial skeleton (mandibular arch, ceratohyal and ethmoid plate) of 12 and 24 mpf fish were higher than that of the 4 mpf fish. In addition, we found the age-dependent increase in BMD was not ubiquitously observed in facial bones, and such differences were not correlated with bone type. In summary, such additional information on the craniofacial skeleton could help in understanding bone development throughout the lifespan of zebrafish.


Subject(s)
Bone Density , Zebrafish , Animals , Humans , X-Ray Microtomography/methods , Facial Bones/diagnostic imaging , Spine
10.
Pharmaceutics ; 14(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432730

ABSTRACT

Nasal spray vaccination is viewed as a promising strategy for inducing both mucosal and systemic protection against respiratory SARS-CoV-2 coronavirus. Toward this goal, a safe and efficacious mucosal adjuvant is necessary for the transportation of the antigen across the mucosal membrane and antigen recognition by the mucosal immune system to generate broad-spectrum immune responses. This study describes the immunological aspects of SARS-CoV-2 spike (S)-protein after being formulated with CpG oligodeoxynucleotides (ODNs) and squalene nanoparticles (termed PELC). Following intranasal delivery in mice, higher expression levels of major histocompatibility complex (MHC) class II and costimulatory molecules CD40 and CD86 on CD11c+ cells were observed at the draining superficial cervical lymph nodes in the CpG-formulated S protein group compared with those vaccinated with S protein alone. Subsequently, the activated antigen-presenting cells downstream modulated the cytokine secretion profiles and expanded the cytotoxic T lymphocyte activity of S protein-restimulated splenocytes. Interestingly, the presence of PELC synergistically enhanced cell-mediated immunity and diminished individual differences in S protein-specific immunogenicity. Regarding humoral responses, the mice vaccinated with the PELC:CpG-formulated S protein promoted the production of S protein-specific IgG in serum samples and IgA in nasal and bronchoalveolar lavage fluids. These results indicate that PELC:CpG is a potential mucosal adjuvant that promotes mucosal/systemic immune responses and cell-mediated immunity, a feature that has implications for the development of a nasal spray vaccine against COVID-19.

11.
Biomed Pharmacother ; 156: 113929, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36411619

ABSTRACT

Bladder cancer is one of the most common malignancies of the male genitourinary urinary system. Protodioscin is a steroidal saponin with anti-cancer effects on several types of cancers; however, the anti-cancer activities of protodioscin on bladder cancer have not yet been investigated. Therefore, we aimed to examine the anti-cancer effects of protodioscin on bladder cancer. Two types of bladder cancer cell lines, non-muscle-invasive 5637 cells and muscle-invasive T24 cells, were used to evaluate the effects of protodioscin on cell growth, migration, invasion and epithelial-mesenchymal transition(EMT) marker expressions. Transcriptome analysis was performed by RNA-seq and validated using real-time PCR and western blot; additionally, an in vivo xenograft animal model was established and the anti-tumor effects of protodioscin were tested. Our results demonstrated that protodioscin inhibited cell proliferation, migration, motility and invasion on 5637 and T24 cells. Additionally, protodioscin also induced cell apoptosis and arrested the progression of cell cycle at G2 phase in bladder cancer cells. Moreover, protodioscin inhibited EMT through increased protein expression of E-cadherin and decreased protein expression of N-cadherin and vimentin. RNA-seq analysis indicated that protodioscin regulated mitogen-activated protein kinase(MAPK) and phosphoinositide 3-kinases(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR) signaling pathways as further verified by Western blot. Furthermore, protodioscin significantly inhibited tumor growth in vivo. Our results indicated that protodioscin inhibits cell growth, migration and invasion and induces apoptosis and G2 phase cell cycle arrest by activated p38 and JNK signaling pathways in bladder cancer cells, suggesting that protodioscin could be an effective agent for bladder cancer treatment.


Subject(s)
Saponins , Urinary Bladder Neoplasms , Humans , Male , Animals , Urinary Bladder Neoplasms/drug therapy , Saponins/pharmacology , Saponins/therapeutic use , Cell Movement , Apoptosis , Phosphatidylinositol 3-Kinases , Signal Transduction , Mammals
12.
Ecotoxicol Environ Saf ; 246: 114164, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36244167

ABSTRACT

We investigated the effects of antibiotics, drugs, and metals on lung and intestinal microbiomes after sub-chronic exposure of low-level air pollution in ageing rats. Male 1.5-year-old Fischer 344 ageing rats were exposed to low-level traffic-related air pollution via whole-body exposure system for 3 months with/without high-efficiency particulate air (HEPA) filtration (gaseous vs. particulate matter with aerodynamic diameter of ≤2.5 µm (PM2.5) pollution). Lung functions, antibiotics, drugs, and metals in lungs were examined and linked to lung and fecal microbiome analyses by high-throughput sequencing analysis of 16 s ribosomal (r)DNA. Rats were exposed to 8.7 µg/m3 PM2.5, 10.1 ppb NO2, 1.6 ppb SO2, and 23.9 ppb O3 in average during the study period. Air pollution exposure decreased forced vital capacity (FVC), peak expiratory flow (PEF), forced expiratory volume in 20 ms (FEV20), and FEF at 25∼75% of FVC (FEF25-75). Air pollution exposure increased antibiotics and drugs (benzotriazole, methamphetamine, methyl-1 H-benzotriazole, ketamine, ampicillin, ciprofloxacin, pentoxifylline, erythromycin, clarithromycin, ceftriaxone, penicillin G, and penicillin V) and altered metals (V, Cr, Cu, Zn, and Ba) levels in lungs. Fusobacteria and Verrucomicrobia at phylum level were increased in lung microbiome by air pollution, whereas increased alpha diversity, Bacteroidetes and Proteobacteria and decreased Firmicutes at phylum level were occurred in intestinal microbiome. Lung function decline was correlated with increasing antibiotics, drugs, and metals in lungs as well as lung and intestinal microbiome dysbiosis. The antibiotics, drugs, and Cr, Co, Ca, and Cu levels in lung were correlated with lung and intestinal microbiome dysbiosis. The lung microbiome was correlated with intestinal microbiome at several phylum and family levels after air pollution exposure. Our results revealed that antibiotics, drugs, and metals in the lung caused lung and intestinal microbiome dysbiosis in ageing rats exposed to air pollution, which may lead to lung function decline.


Subject(s)
Air Pollutants , Air Pollution , Gastrointestinal Microbiome , Male , Rats , Animals , Dysbiosis/chemically induced , Anti-Bacterial Agents/analysis , Environmental Exposure/analysis , Air Pollution/analysis , Particulate Matter/analysis , Lung , Metals/analysis , Aging , Air Pollutants/analysis
13.
Biomater Adv ; 141: 213113, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36099811

ABSTRACT

In most skin cancer patients, excisional surgery is required to remove tumorous tissue. However, the risk of locoregional recurrence after surgery alone is relatively high, particularly for a locally advanced stage of melanoma. Therefore, additional adjuvant treatments, such as radiotherapy, can be used after surgery to inhibit recurrent melanoma after surgical removal. To enhance local radiotherapy, we present the combined X-ray radiation and radiosensitizers (carboplatin) through microneedles (MNs) to treat melanoma. The MNs could be beneficial to precisely delivering carboplatin into the sub-epidermal layer of the melanoma region and alleviate patients' fear and discomfort during the drug administration compared to the traditional local injection. The carboplatin was loaded into the tips of dissolving gelatin MNs (carboplatin-MNs) through the molding method. The results show gelatin MNs have sufficient mechanical strength and can successfully administer carboplatin into the skin. Both in vitro and in vivo studies suggest that carboplatin can enhance radiotherapy in melanoma treatment. With a combination of radiotherapy and carboplatin, the inhibition effect of carboplatin delivered into the B16F10 murine melanoma model through MNs administration (1.2 mg/kg) is equivalent to that through an intravenous route (5 mg/kg). The results demonstrate a promise of combined carboplatin and X-ray radiation treatment in treating melanoma by MNs administration.


Subject(s)
Melanoma , Skin Neoplasms , Administration, Cutaneous , Animals , Carboplatin/therapeutic use , Gelatin , Humans , Melanoma/drug therapy , Mice , Needles , Skin Neoplasms/drug therapy
14.
Life (Basel) ; 12(4)2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35455057

ABSTRACT

Brainstem tumors are heterogenous and cancerous glioma tumors arising from the midbrain, pons, and the medulla that are relatively common in children, accounting for 10% to 20% of all pediatric brain tumors. However, the prognosis of aggressive brainstem gliomas remains extremely poor despite aggressive treatment with chemotherapy and radiotherapy. That means there are many life-threatening patients who have exhausted all available treatment options and are beginning to face end-of-life stage. Therefore, the unique properties of highly selective heavy particle irradiation with boron neutron capture therapy (BNCT) may be well suited to prolong the lives of patients with end-stage brainstem gliomas. Herein, we report a case series of life-threatening patients with end-stage brainstem glioma who eligible for Emergency and Compassionate Use, in whom we performed a scheduled two fractions of salvage BNCT strategy with low treatment dosage each time. No patients experienced acute or late adverse events related to BNCT. There were 3 patients who relapsed after two fractionated BNCT treatment, characterized by younger age, lower T/N ratio, and receiving lower treatment dose. Therefore, two fractionated low-dose BNCT may be a promising treatment for end-stage brainstem tumors. For younger patients with low T/N ratios, more fractionated low-dose BNCT should be considered.

15.
Molecules ; 27(7)2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35408725

ABSTRACT

In this report, 19 boron-containing depsipeptides were synthesized via microwave-assisted Passerini three-component reaction (P-3CR) in an aqueous environment. The linker-free DAHMI fluorescent tagging approach was used on selected boron-containing compounds to study the relationship between their structures and their level of cellular uptake of HEK293 cells. The biological data retrieved from the DAHMI experiments indicated that while the structures of tested compounds may be highly similar, their bio-distribution profile could be vastly distinctive. The reported optimized one-pot synthetic strategy along the linker-free in vitro testing protocol could provide an efficient platform to accelerate the development of boron-containing drugs.


Subject(s)
Depsipeptides , Microwaves , Boron , Depsipeptides/chemistry , HEK293 Cells , Humans
16.
Environ Sci Pollut Res Int ; 29(4): 6140-6150, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34448140

ABSTRACT

Epidemiological studies identified the relationship between air pollution and pulmonary tuberculosis. Effects of lung-deposited dose of particulate matter (PM) on culture-positive pulmonary tuberculosis remain unclear. This study investigates the association between lung-deposited dose of PM and pulmonary tuberculosis pleurisy. A case-control study of subjects undergoing pleural effusion drainage of pulmonary tuberculosis (case) and chronic heart failure (control) was conducted. Metals and biomarkers were quantified in the pleural effusion. The air pollution exposure was measured and PM deposition in the head, tracheobronchial, alveolar region, and total lung region was estimated by Multiple-path Particle Dosimetry (MPPD) Model. We performed multiple logistic regression to examine the associations of these factors with the risk of tuberculosis. We observed that 1-µg/m3 increase in PM10 was associated with 1.226-fold increased crude odds ratio (OR) of tuberculosis (95% confidence interval (CI): 1.023-1.469, p<0.05), 1-µg/m3 increase in PM2.5-10 was associated with 1.482-fold increased crude OR of tuberculosis (95% CI: 1.048-2.097, p < 0.05), 1-ppb increase in NO2 was associated with 1.218-fold increased crude OR of tuberculosis (95% CI: 1.025-1.447, p < 0.05), and 1-ppb increase in O3 was associated with 0.735-fold decreased crude OR of tuberculosis (95% CI: 0.542 0.995). We observed 1-µg/m3 increase in PM deposition in head and nasal region was associated with 1.699-fold increased crude OR of tuberculosis (95% CI: 1.065-2.711, p < 0.05), 1-µg/m3 increase in PM deposition in tracheobronchial region was associated with 1.592-fold increased crude OR of tuberculosis (95% CI: 1.095-2.313, p < 0.05), 1-µg/m3 increase in PM deposition in alveolar region was associated with 3.981-fold increased crude OR of tuberculosis (95% CI: 1.280-12.386, p < 0.05), and 1-µg/m3 increase in PM deposition in total lung was associated with 1.511-fold increased crude OR of tuberculosis (95% CI: 1.050-2.173, p < 0.05). The results indicate that particle deposition in alveolar region could cause higher risk of pulmonary tuberculosis pleurisy than deposition in other lung regions.


Subject(s)
Air Pollutants , Air Pollution , Pleurisy , Tuberculosis, Pulmonary , Air Pollutants/analysis , Air Pollution/analysis , Case-Control Studies , Environmental Exposure/analysis , Humans , Lung/chemistry , Nitrogen Dioxide , Particulate Matter/analysis
17.
J Hazard Mater ; 427: 127871, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34862106

ABSTRACT

As microplastics (MPs) dispersed into the environment, people might be exposed to MPs. Most pollutants either pass through or concentrate in the kidney. Therefore, nephrotoxicity tests are needed to verify the toxic potential of MPs. Here we used human embryonic kidney 293 (HEK293) cells to determine the association between nephrotoxicity and round-shape polystyrene MPs (PSMPs) (3.54 ± 0.39 µm) under realistic environmental exposure concentrations. Results revealed that PSMPs can adhere to the cell membrane and get entirely engulfed by HEK293 cells. PSMPs can induce cytotoxicity by oxidative stress via inhibition of the antioxidant haem oxygenase-1. Depolarisation of the mitochondrial membrane potential and formation of autophagosomes confirmed that apoptosis and autophagy can be simultaneously induced by PSMPs. The inflammatory factor was only activated (33 cytokines) by noncytotoxic concentration of PSMPs (3 ng/mL); however, the cytotoxic concentration (300 ng/mL) of PSMPs induced autophagy, which might further reduce NLRP3 expression, thus contributing to dampening inflammation (35 cytokines) in HEK293 cells. PSMPs (300 ng/mL) can impair kidney barrier integrity and increase the probability of developing acute kidney injury through the depletion of the zonula occludens-2 proteins and α1-antitrypsin. Altogether, our results demonstrated that environmental exposure to PSMPs may lead to an increased risk of renal disease.


Subject(s)
Microplastics , Water Pollutants, Chemical , HEK293 Cells , Humans , Oxidative Stress , Plastics , Polystyrenes/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
19.
Biomedicines ; 9(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34572302

ABSTRACT

Hemophilia A is a bleeding disease caused by loss of coagulation factor VIII (FVIII) function. Although prophylactic FVIII infusion prevents abnormal bleeding, disability and joint damage in hemophilia patients are common. The cost of treatment is among the highest for a single disease, and the adverse effects of repeated infusion are still an issue that has not been addressed. In this study, we established a nonviral gene therapy strategy to treat FVIII knockout (FVIII KO) mice. A novel gene therapy approach was developed using dipalmitoylphosphatidylcholine formulated with iron oxide (DPPC-Fe3O4) to carry the B-domain-deleted (BDD)-FVIII plasmid, which was delivered into the FVIII KO mice via tail vein injection. Here, a liver-specific albumin promoter-driven BDD-FVIII plasmid was constructed, and the binding ability of circular DNA was confirmed to be more stable than that of linear DNA when combined with DPPC-Fe3O4 nanoparticles. The FVIII KO mice that received the DPPC-Fe3O4 plasmid complex were assessed by staining the ferric ion of DPPC-Fe3O4 nanoparticles with Prussian blue in liver tissue. The bleeding of the FVIII KO mice was improved in a few weeks, as shown by assessing the activated partial thromboplastin time (aPTT). Furthermore, no liver toxicity, thromboses, deaths, or persistent changes after nonviral gene therapy were found, as shown by serum liver indices and histopathology. The results suggest that this novel gene therapy can successfully improve hemostasis disorder in FVIII KO mice and might be a promising approach to treating hemophilia A patients in clinical settings.

20.
Biosensors (Basel) ; 11(7)2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34356691

ABSTRACT

The issue of micro-plastics is becoming more and more important due to their ubiquity and the harm they cause to the human body. Therefore, evaluating the biological-physical interaction of micro-plastics with health cells has become the focus of many research efforts. This study focuses on the movement mode and low concentration detection development for micro-plastics in surface plasmon resonance (SPR). Firstly, 20-micrometer micro-plastics were prepared by grinding and filtering, and the movement mode was explored; then, the characteristics were investigated by SPR. Chromatographic analysis showed that the surface charge of micro-plastics dominated the elution time, and estrogen receptors (ERs) played a supporting role. A difference of micro-plastics in SPR sensorgram was observed, inferring the micro-plastics' movement in rolling mode on the ERs. Characteristics analysis indicated that the low particle number of micro-plastics on SPR showed a linear relationship with the response unit (RU). When ERs were immobilized on the biosensor, the force of the binding of micro-plastics to ERs under an ultra-low background was equivalent to the dissociation rate constant shown as follows: PS (0.05 nM) > PVC (0.09 nM) > PE (0.14 nM). The ELISA-like magnetic beads experiment verified the specificity between ERs and micro-plastics. Therefore, by using the SPR technique, a biological-derived over-occupation of PS was found via higher binding force with ERs and longer retention time. In the future, there will be considerable potential for micro-plastics issues, such as identification in natural samples, biomarking, real-time detection in specific environments/regions and human health subject.


Subject(s)
Environmental Monitoring , Microplastics , Surface Plasmon Resonance , Biosensing Techniques , Equipment Design , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...