Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 289(33): 22648-22658, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24966333

ABSTRACT

E1 enzymes activate ubiquitin or ubiquitin-like proteins (Ubl) via an adenylate intermediate and initiate the enzymatic cascade of Ubl conjugation to target proteins or lipids. Ubiquitin-fold modifier 1 (Ufm1) is activated by the E1 enzyme Uba5, and this pathway is proposed to play an important role in the endoplasmic reticulum (ER) stress response. However, the mechanisms of Ufm1 activation by Uba5 and subsequent transfer to the conjugating enzyme (E2), Ufc1, have not been studied in detail. In this work, we found that Uba5 activated Ufm1 via a two-step mechanism and formed a binary covalent complex of Uba5∼Ufm1 thioester. This feature contrasts with the three-step mechanism and ternary complex formation in ubiquitin-activating enzyme Uba1. Uba5 displayed random ordered binding with Ufm1 and ATP, and its ATP-pyrophosphate (PPi) exchange activity was inhibited by both AMP and PPi. Ufm1 activation and Uba5∼Ufm1 thioester formation were stimulated in the presence of Ufc1. Furthermore, binding of ATP to Uba5∼Ufm1 thioester was required for efficient transfer of Ufm1 from Uba5 to Ufc1 via transthiolation. Consistent with the two-step activation mechanism, the mechanism-based pan-E1 inhibitor, adenosine 5'-sulfamate (ADS), reacted with the Uba5∼Ufm1 thioester and formed a covalent, tight-binding Ufm1-ADS adduct in the active site of Uba5, which prevented further substrate binding or catalysis. ADS was also shown to inhibit the Uba5 conjugation pathway in the HCT116 cells through formation of the Ufm1-ADS adduct. This suggests that further development of more selective Uba5 inhibitors could be useful in interrogating the roles of the Uba5 pathway in cells.


Subject(s)
Multiprotein Complexes , Proteins , Ubiquitin-Activating Enzymes , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Catalytic Domain , Cell Line , Enzyme Activation , Humans , Models, Chemical , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Binding , Protein Structure, Quaternary , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
2.
J Biol Chem ; 287(19): 15512-22, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22427669

ABSTRACT

Uba6 is a homolog of the ubiquitin-activating enzyme, Uba1, and activates two ubiquitin-like proteins (UBLs), ubiquitin and FAT10. In this study, biochemical and biophysical experiments were performed to understand the mechanisms of how Uba6 recognizes two distinct UBLs and catalyzes their activation and transfer. Uba6 is shown to undergo a three-step activation process and form a ternary complex with both UBLs, similar to what has been observed for Uba1. The catalytic mechanism of Uba6 is further supported by inhibition studies using a mechanism-based E1 inhibitor, Compound 1, which forms covalent adducts with both ubiquitin and FAT10. In addition, pre-steady state kinetic analysis revealed that the rates of UBL-adenylate (step 1) and thioester (step 2) formation are similar between ubiquitin and FAT10. However, distinct kinetic behaviors were also observed for ubiquitin and FAT10. FAT10 binds Uba6 with much higher affinity than ubiquitin while demonstrating lower catalytic activity in both ATP-PP(i) exchange and E1-E2 transthiolation assays. Also, Compound 1 is less potent with FAT10 as the UBL compared with ubiquitin in ATP-PP(i) exchange assays, and both a slow rate of covalent adduct formation and weak adduct binding to Uba6 contribute to the diminished potency observed for FAT10. Together with expression level analysis in IM-9 cells, this study sheds light on the potential role of cytokine-induced FAT10 expression in regulating Uba6 pathways.


Subject(s)
Adenosine Triphosphate/metabolism , Diphosphates/metabolism , Ubiquitin-Activating Enzymes/metabolism , Ubiquitins/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Amino Acid Sequence , Animals , Blotting, Western , Cell Line , Enzyme Activation/drug effects , Humans , Interferon-gamma/pharmacology , Kinetics , Mass Spectrometry , Molecular Sequence Data , Molecular Structure , Protein Binding/drug effects , Spodoptera , Substrate Specificity , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Surface Plasmon Resonance , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Activating Enzymes/genetics , Ubiquitins/chemistry , Ubiquitins/genetics
3.
J Biol Chem ; 286(47): 40867-77, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-21969368

ABSTRACT

Ubiquitin-activating enzyme (UAE or E1) activates ubiquitin via an adenylate intermediate and catalyzes its transfer to a ubiquitin-conjugating enzyme (E2). MLN4924 is an adenosine sulfamate analogue that was identified as a selective, mechanism-based inhibitor of NEDD8-activating enzyme (NAE), another E1 enzyme, by forming a NEDD8-MLN4924 adduct that tightly binds at the active site of NAE, a novel mechanism termed substrate-assisted inhibition (Brownell, J. E., Sintchak, M. D., Gavin, J. M., Liao, H., Bruzzese, F. J., Bump, N. J., Soucy, T. A., Milhollen, M. A., Yang, X., Burkhardt, A. L., Ma, J., Loke, H. K., Lingaraj, T., Wu, D., Hamman, K. B., Spelman, J. J., Cullis, C. A., Langston, S. P., Vyskocil, S., Sells, T. B., Mallender, W. D., Visiers, I., Li, P., Claiborne, C. F., Rolfe, M., Bolen, J. B., and Dick, L. R. (2010) Mol. Cell 37, 102-111). In the present study, substrate-assisted inhibition of human UAE (Ube1) by another adenosine sulfamate analogue, 5'-O-sulfamoyl-N(6)-[(1S)-2,3-dihydro-1H-inden-1-yl]-adenosine (Compound I), a nonselective E1 inhibitor, was characterized. Compound I inhibited UAE-dependent ATP-PP(i) exchange activity, caused loss of UAE thioester, and inhibited E1-E2 transthiolation in a dose-dependent manner. Mechanistic studies on Compound I and its purified ubiquitin adduct demonstrate that the proposed substrate-assisted inhibition via covalent adduct formation is entirely consistent with the three-step ubiquitin activation process and that the adduct is formed via nucleophilic attack of UAE thioester by the sulfamate group of Compound I after completion of step 2. Kinetic and affinity analysis of Compound I, MLN4924, and their purified ubiquitin adducts suggest that both the rate of adduct formation and the affinity between the adduct and E1 contribute to the overall potency. Because all E1s are thought to use a similar mechanism to activate their cognate ubiquitin-like proteins, the substrate-assisted inhibition by adenosine sulfamate analogues represents a promising strategy to develop potent and selective E1 inhibitors that can modulate diverse biological pathways.


Subject(s)
Enzyme Inhibitors/pharmacology , Sulfonic Acids/pharmacology , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Animals , Cattle , Diphosphates/metabolism , Humans , Hydrolysis/drug effects , Kinetics , Sulfhydryl Compounds/metabolism , Ubiquitin-Activating Enzymes/metabolism
4.
PLoS One ; 4(3): e4949, 2009.
Article in English | MEDLINE | ID: mdl-19305495

ABSTRACT

BACKGROUND: Glycerol nucleic acid (GNA) has an acyclic phosphoglycerol backbone repeat-unit, but forms stable duplexes based on Watson-Crick base-pairing. Because of its structural simplicity, GNA is of particular interest with respect to the possibility of evolving functional polymers by in vitro selection. Template-dependent GNA synthesis is essential to any GNA-based selection system. PRINCIPAL FINDINGS: In this study, we investigated the ability of various DNA polymerases to use glycerol-nucleoside triphosphates (gNTPs) as substrates for GNA synthesis on DNA templates. Therminator DNA polymerase catalyzes quantitative primer-extension by the incorporation of two glyceronucleotides, with much less efficient extension up to five glyceronucleotides. Steady-state kinetic experiments suggested that GNA synthesis by Therminator was affected by both decreased catalytic rates and weakened substrate binding, especially for pyrimidines. In an attempt to improve pyrimidine incorporation by providing additional stacking interactions, we synthesized two new gNTP analogs with 5-propynyl substituted pyrimidine nucleobases. This led to more efficient incorporation of gC, but not gT. CONCLUSIONS: We suggest that directed evolution of Therminator might lead to mutants with improved substrate binding and catalytic efficiency.


Subject(s)
DNA Primers , DNA-Directed DNA Polymerase/metabolism , DNA/chemistry , Glycerol/chemistry , Templates, Genetic , DNA Primers/chemistry , DNA Primers/metabolism , Molecular Structure , Nucleic Acid Conformation
5.
J Am Chem Soc ; 131(6): 2119-21, 2009 Feb 18.
Article in English | MEDLINE | ID: mdl-19166350

ABSTRACT

Glycerol nucleic acid (GNA) is an interesting base-pairing system with an acyclic, three-carbon backbone. In the present study, GNA analogues with N2'-->P3' phosphoramidate linkages (npGNA) have been synthesized and their base-pairing properties examined. Thermal denaturation and circular dichroism studies show that npGNA can form stable duplexes with itself and with GNA. Furthermore, we show that npGNA can be assembled by template-directed ligation of 3'-imidazole-activated-2'-amino GNA dinucleotides. These results suggest that npGNA is a potential candidate for a self-replicating system based upon phosphoramidate linkages.


Subject(s)
Amides/chemistry , Genetic Structures , Glycerol/analogs & derivatives , Nucleic Acids/chemistry , Phosphoric Acids/chemistry , Biomimetic Materials/chemistry , Circular Dichroism , DNA/chemistry , DNA/genetics , Imidazoles/chemistry , Nucleic Acids/genetics , Nucleotides/chemistry , Nucleotides/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...