Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 287
Filter
1.
Chin J Integr Med ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900227

ABSTRACT

The hippocampus is one of the most commonly studied brain regions in the context of depression. The volume of the hippocampus is significantly reduced in patients with depression, which severely disrupts hippocampal neuroplasticity. However, antidepressant therapies that target hippocampal neuroplasticity have not been identified as yet. Chinese medicine (CM) can slow the progression of depression, potentially by modulating hippocampal neuroplasticity. Xiaoyaosan (XYS) is a CM formula that has been clinically used for the treatment of depression. It is known to protect Gan (Liver) and Pi (Spleen) function, and may exert its antidepressant effects by regulating hippocampal neuroplasticity. In this review, we have summarized the association between depression and aberrant hippocampal neuroplasticity. Furthermore, we have discussed the researches published in the last 30 years on the effects of XYS on hippocampal neuroplasticity in order to elucidate the possible mechanisms underlying its therapeutic action against depression. The results of this review can aid future research on XYS for the treatment of depression.

2.
Front Microbiol ; 15: 1377392, 2024.
Article in English | MEDLINE | ID: mdl-38881665

ABSTRACT

Background: Numerous studies have established that alterations in the gut microbiota (GM) constitute an embedded mechanism in functional dyspepsia (FD). However, the specific GM taxa implicated in the pathological process of FD have remained unclear. Methods: A two-sample Mendelian randomization analysis was initially conducted to examine the causal relationships between GM and FD, utilizing GWAS data from the MiBioGen Consortium (18,340 cases) and FinnGenn (8,875 cases vs. 320,387 controls). The MR study primarily employed the inverse-variance weighted (IVW) method. Sensitivity analyses were performed to test for heterogeneity and pleiotropy. Single-nucleotide polymorphisms of causal GM taxa were mapped to genes, which were subsequently assessed for causal relationships with FD employing the same methodology. Results: IVW results revealed that the genus Clostridium innocuum group (OR: 1.12, 95% CI: 1.02-1.24, P = 0.020) and genus Ruminiclostridium 9 were positively associated with FD risk (OR: 1.27, 95% CI: 1.03-1.57, P = 0.028), while the genus Lachnospiraceae FCS020 group tended to exert a negative effect on FD risk (OR = 0.84, 95% CI: 0.73-0.98, P = 0.023). Among GM-related genes, a notable association was observed between RSRC1 and increased FD risk (OR = 1.13, 95% CI: 1.07-1.20, P < 0.001). In sensitivity analyses, no significant pleiotropy or heterogeneity of the results was found. Conclusions: This study furnished evidence for distinct effects of specific GM taxa on FD risk and hinted at a potential biological mechanism, thereby offering theoretical underpinning for future microbiotherapy of FD.

3.
Phytomedicine ; 130: 155660, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38815407

ABSTRACT

BACKGROUND: Xiaoyao pills (XYP) is a commercial Chinese patent medicine used in the treatment of depression. However, the mechanisms underlying its therapeutic effects, as well as the patients who can benefit from XYP, have not been evaluated so far. OBJECTIVES: To this end, we conducted a double-blinded, random, and placebo-controlled clinical trial of orally administered XYP in patients with depression. METHODS: The 17-item Hamilton Depression Rating Scale (HAMD-17) scores were recorded at baseline, and every 2 weeks after the start of treatment. To further elucidate the epigenetic mechanism of XYP, we performed mRNA sequencing and genome-wide DNA methylation sequencing using peripheral blood leukocytes of patients and healthy. RESULTS: XYP effectively alleviated the symptoms in patients with mild or moderate depressive disorders, particularly that of psychomotor retardation. XYP restored aberrant gene expression and DNA methylation patterns associated with depression, and the normalization of DNA methylation correlated with downregulation of several genes. In addition, altered DNA methylation levels in the XYP-treated samples were attributed to increased expression of the DNA methyltransferase DNMT1. CONCLUSIONS: Our study provides new insights into the epigenetic mechanism underlying depression and the therapeutic effects of XYP, along with an experimental basis for using XYP in the treatment of depression. TRIAL REGISTRATION INFORMATION: The name of the registry and number: U.S. CLINICAL TRIALS REGISTRY: The link to the registration: ClinicalTrials.gov ISRCTN12746343 (https://www.isrctn.com/ISRCTN12746343). The name of the trial register is "Efficacy and safety of the Xiaoyao pill for improving the clinical symptoms of stagnation of liver qi (chi) and spleen deficiency". The clinical trial registration number is ISRCTN12746343.


Subject(s)
DNA Methylation , Depression , Drugs, Chinese Herbal , Humans , DNA Methylation/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Double-Blind Method , Male , Female , Middle Aged , Adult , Depression/drug therapy , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Epigenesis, Genetic/drug effects , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology
4.
Front Immunol ; 15: 1289049, 2024.
Article in English | MEDLINE | ID: mdl-38482005

ABSTRACT

Background: Inflammatory bowel disease (IBD) and ankylosing spondylitis (AS) share common traits of chronic recurrent inflammation affecting both the intestines and joints. Epidemiological studies have revealed that the incidence of AS has jumped from 0.3% to 3% among patients with IBD. However, these findings do not definitively establish a causal relationship whereby IBD directly leads to the development of AS. Moreover, whether the activity of IBD will have an impact on this process remains a pending question. Methods: Two-sample Mendelian randomization (MR) analyses were employed across multiple datasets to investigate the potential of IBD as a risk factor for AS. The pathogenic genes of AS were identified by MR analysis of expression quantitative trait locus. Risk scores for active and inactive patients were calculated by single-sample gene set enrichment analysis. Comparative assessments encompassing alterations in risk transcription factor activity, shifts in signaling pathways, and variances in immune cell profiles were conducted between active and inactive patients. Moreover, the correlation of immune cells and risk genes was quantified. Results: A total of 6 MR analyses, conducted across 3 exposure datasets and 2 outcome datasets, consistently revealed that IBD substantially elevates the risk of AS development. The MR analysis of the two outcome datasets identified 66 and 54 risk genes, respectively. Notably, both the risk scores computed from the two distinct sets of risk genes were notably higher in active patients compared to their inactive counterparts. Discernible variations in the activity of risk-associated transcription factors were observed between active and inactive patients. In addition, three inflammatory pathways exhibited marked activation in active patients. Moreover, seven specific immune cell types, closely linked to disease activity, exhibited statistically significant correlations with the identified risk genes. Conclusion: By combining Mendelian randomization with transcriptome analysis, this study postulates IBD as a significant risk factor for AS, and further presents innovative evidence for the impact of IBD activity on the progression of AS.


Subject(s)
Inflammatory Bowel Diseases , Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/genetics , Mendelian Randomization Analysis , Inflammatory Bowel Diseases/genetics , Inflammation , Gene Expression Profiling
5.
Pharmacol Res ; 202: 107112, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403256

ABSTRACT

Depression is a common disease that affects physical and mental health and imposes a considerable burden on afflicted individuals and their families worldwide. Depression is associated with a high rate of disability and suicide. It causes a severe decline in productivity and quality of life. Unfortunately, the pathophysiological mechanisms underlying depression have not been fully elucidated, and the risk of its treatment is still presented. Studies have shown that the expression of autophagic markers in the brain and peripheral inflammatory mediators are dysregulated in depression. Autophagy-related genes regulate the level of autophagy and change the inflammatory response in depression. Depression is related to several aspects of immunity. The regulation of the immune system and inflammation by autophagy may lead to the development or deterioration of mental disorders. This review highlights the role of autophagy and neuroinflammation in the pathophysiology of depression, sumaries the autophagy-targeting small moleculars, and discusses a novel therapeutic strategy based on anti-inflammatory mechanisms that target autophagy to treat the disease.


Subject(s)
Neuroinflammatory Diseases , Quality of Life , Humans , Autophagy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
6.
Front Cell Infect Microbiol ; 14: 1334426, 2024.
Article in English | MEDLINE | ID: mdl-38375363

ABSTRACT

Background: Babesia is a unique apicomplexan parasite that specifically invades and proliferates in red blood cells and can be transmitted via blood transfusion, resulting in transfusion-transmitted babesiosis. However, detecting Babesia in blood before transfusion has not received enough attention, and the risk of transfusing blood containing a low density of Babesia microti (B. microti) is unclear, possibly threatening public health and wellness. Purpose: This study aimed to determine the lower detection limit of B. microti in blood and to evaluate the transmission risk of blood transfusion containing low-density B. microti. Methods: Infected BALB/c mouse models were established by transfusing infected whole blood with different infection rates and densities of B. microti. Microscopic examination, nested Polymerase Chain Reaction (nested PCR), and an enzyme-linked immunosorbent assay (ELISA) were used to evaluate the infection status of the mouse models. Meanwhile, the nested PCR detection limit of B. microti was obtained using pure B. microti DNA samples with serial concentrations and whole blood samples with different densities of B. microti-infected red blood cells. Thereafter, whole mouse blood with a B. microti density lower than that of the nested PCR detection limit and human blood samples infected with B. microti were transfused into healthy mice to assess the transmission risk in mouse models. The infection status of these mice was evaluated through microscopic examination, nested PCR tests, and ELISA. Results: The mice inoculated with different densities of B. microti reached the peak infection rate on different days. Overall, the higher the blood B. microti density was, the earlier the peak infection rate was reached. The levels of specific antibodies against B. microti in the blood of the infected mice increased sharply during the first 30 days of infection, reaching a peak level at 60 days post-infection, and maintaining a high level thereafter. The nested PCR detection limits of B. microti DNA and parasite density were 3 fg and 5.48 parasites/µL, respectively. The whole blood containing an extremely low density of B. microti and human blood samples infected with B. microti could infect mice, confirming the transmission risk of transfusing blood with low-density B. microti. Conclusion: Whole blood containing extremely low density of B. microti poses a high transmission risk when transfused between mice and mice or human and mice, suggesting that Babesia detection should be considered by governments, hospitals, and disease prevention and control centers as a mandatory test before blood donation or transfusion.


Subject(s)
Babesia microti , Babesia , Babesiosis , Humans , Animals , Mice , Babesia microti/genetics , Babesia/genetics , Blood Transfusion , Babesiosis/diagnosis , Babesiosis/parasitology , DNA, Protozoan , Mice, Inbred BALB C , Disease Models, Animal
7.
Math Biosci Eng ; 21(1): 392-414, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303428

ABSTRACT

Bipolar disorder (BD) is a psychiatric disorder that affects an increasing number of people worldwide. The mechanisms of BD are unclear, but some studies have suggested that it may be related to genetic factors with high heritability. Moreover, research has shown that chronic stress can contribute to the development of major illnesses. In this paper, we used bioinformatics methods to analyze the possible mechanisms of chronic stress affecting BD through various aspects. We obtained gene expression data from postmortem brains of BD patients and healthy controls in datasets GSE12649 and GSE53987, and we identified 11 chronic stress-related genes (CSRGs) that were differentially expressed in BD. Then, we screened five biomarkers (IGFBP6, ALOX5AP, MAOA, AIF1 and TRPM3) using machine learning models. We further validated the expression and diagnostic value of the biomarkers in other datasets (GSE5388 and GSE78936) and performed functional enrichment analysis, regulatory network analysis and drug prediction based on the biomarkers. Our bioinformatics analysis revealed that chronic stress can affect the occurrence and development of BD through many aspects, including monoamine oxidase production and decomposition, neuroinflammation, ion permeability, pain perception and others. In this paper, we confirm the importance of studying the genetic influences of chronic stress on BD and other psychiatric disorders and suggested that biomarkers related to chronic stress may be potential diagnostic tools and therapeutic targets for BD.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/genetics , Bipolar Disorder/diagnosis , Bipolar Disorder/psychology , Brain/metabolism , Computational Biology , Biomarkers/metabolism , Gene Expression
8.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399439

ABSTRACT

Background: Arnicolide C, which is isolated from Centipeda minima, has excellent antitumor effects. However, the potential impacts and related mechanisms of action of arnicolide C in breast cancer remain unknown. Methods: The viability of breast cancer cells was measured using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and colony formation assays. For analysis of apoptosis and the cell cycle, flow cytometry was used. A molecular docking approach was used to explore the possible targets of arnicolide C. Western blot analysis was used to detect changes in the expression of 14-3-3θ and proteins in related pathways after arnicolide C treatment in breast cancer cells. The anti-breast cancer effect of arnicolide C in vivo was evaluated by establishing cell-derived xenograft (CDX) and patient-derived xenograft (PDX) models. Results: Arnicolide C inhibited proliferation, increased apoptosis, and induced G1 arrest. In particular, molecular docking analysis indicated that arnicolide C binds to 14-3-3θ. Arnicolide C reduced 14-3-3θ expression and inhibited its downstream signaling pathways linked to cell proliferation. Similar results were obtained in the CDX and PDX models. Conclusion: Arnicolide C can have an anti-breast cancer effect both in vitro and in vivo and can induce cell cycle arrest and increase apoptosis in vitro. The molecular mechanism may be related to the effect of arnicolide C on the expression level of 14-3-3θ. However, the specific mechanism through which arnicolide C affects 14-3-3θ protein expression still needs to be determined.

9.
Microbiome ; 12(1): 34, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378622

ABSTRACT

BACKGROUND: Remodeling eubiosis of the gut microenvironment may contribute to preventing the occurrence and development of depression. Mounting experimental evidence has shown that complement C3 signaling is associated with the pathogenesis of depression, and disruption of the gut microbiota may be an underlying cause of complement system activation. However, the mechanism by which complement C3 participates in gut-brain crosstalk in the pathogenesis of depression remains unknown. RESULTS: In the present study, we found that chronic unpredictable mild stress (CUMS)-induced mice exhibited obvious depression-like behavior as well as cognitive impairment, which was associated with significant gut dysbiosis, especially enrichment of Proteobacteria and elevation of microbiota-derived lipopolysaccharides (LPS). In addition, peripheral and central complement C3 activation and central C3/CR3-mediated aberrant synaptic pruning in microglia have also been observed. Transplantation of gut microbiota from CUMS-induced depression model mice into specific pathogen-free and germ-free mice induced depression-like behavior and concomitant cognitive impairment in the recipient mice, accompanied by increased activation of the complement C3/CR3 pathway in the prefrontal cortex and abnormalities in microglia-mediated synaptic pruning. Conversely, antidepressants and fecal microbiota transplantation from antidepressant-treated donors improved depression-like behaviors and restored gut microbiome disturbances in depressed mice. Concurrently, inhibition of the complement C3/CR3 pathway, amelioration of abnormal microglia-mediated synaptic pruning, and increased expression of the synapsin and postsynaptic density protein 95 were observed. Collectively, our results revealed that gut dysbiosis induces the development of depression-like behaviors through abnormal synapse pruning in microglia-mediated by complement C3, and the inhibition of abnormal synaptic pruning is the key to targeting microbes to treat depression. CONCLUSIONS: Our findings provide novel insights into the involvement of complement C3/CR3 signaling and aberrant synaptic pruning of chemotactic microglia in gut-brain crosstalk in the pathogenesis of depression. Video Abstract.


Subject(s)
Depression , Microglia , Animals , Mice , Complement C3 , Depression/microbiology , Dysbiosis , Microglia/physiology , Synapses/physiology
10.
Chemosphere ; 351: 141274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253088

ABSTRACT

The methodology of sugaring out-assisted liquid-liquid extraction (SULLE) coupled with high-performance liquid chromatography-fluorescence detection was devised for quantifying bisphenol A (BPA) and bisphenol B (BPB) in beeswax. The effectiveness of SULLE was methodically explored and proved superior to the salting out-assisted liquid-liquid extraction approach for beeswax sample preparation. The analytical performance underwent comprehensive validation, revealing detection limits of 10 µg/kg for BPA and 20 µg/kg for BPB. The method developed was employed to analyse commercial beeswax (n = 15), beeswax foundation (n = 15) and wild-build comb wax (n = 26) samples. The analysis revealed BPA presence in four commercial beeswax samples and three beeswax foundation samples, with the highest detected residue content being 88 ± 7 µg/kg. For BPB, two beeswax foundation samples were positive, with concentrations below the limits of quantification and 85 ± 4 µg/kg, respectively. No bisphenols were detected in wild-build comb wax. Furthermore, the bisphenol removal efficacy of two recycling methods-boiling in water and methanol extraction-was assessed. The findings indicated that after four recycling cycles using water boiling, 9.6% of BPA and 29.2% of BPB remained in the beeswax. Whereas methanol extraction resulted in approximately 7% residual after one recycling process. A long-term study over 210 days revealed the slow degradation of bisphenols in comb beeswax. This degradation fitted well with a first-order model, indicating half-lives (DT50) of 139 days for BPA and 151 days for BPB, respectively. This research provides the first report on bisphenol contamination in beeswax. The low removal rate during the recycling process and the gradual degradation in beeswax underscore the significance of bisphenol contamination and migration in bee hives along with their potential risk to pollinators warranting concern. Furthermore, the developed SULLE method shows promise in preparing beeswax samples to analyse other analytes.


Subject(s)
Methanol , Phenols , Sugars , Waxes , Animals , Bees , Methanol/analysis , Chromatography, High Pressure Liquid , Benzhydryl Compounds/analysis , Liquid-Liquid Extraction , Water/analysis
11.
J Chromatogr A ; 1715: 464613, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38184988

ABSTRACT

Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) technology has emerged as a crucial tool for identifying components in traditional Chinese medicine (TCM). However, the characterization of the chemical profiles of TCM prescriptions (TCMPs) which often consist of multiple herbal medicines and contain diverse structural types, presents several challenges, such as component overlapping and time-consuming. In this study, a novel strategy known as the multi-module structure labelled molecular network (MSLMN), which integrates molecular networking, database annotation, and cluster analysis techniques, has been successfully proposed, which facilitates the identification of chemical constituents by leveraging a high-structural similarity ion list derived from the MSLMN. It has been effectively applied to analyze the chemical profile of Xiaoyao San (XYS), a classical TCMP. Through the MSLMN method, a total of 302 chemical constituents were identified, covering nine structural types in XYS. Furthermore, a validated and quantitative analytical method using UHPLC-QqQ-MS/MS technology was developed for 31 identified chemicals, encompassing all eight herbal medicines present in XYS, and the developed analytical approach was applied to investigate the content distribution across 40 different batches of commercially available XYS. In total, the proposed strategy has practical significance for improving the insight into the chemical profile of XYS and serves as a valuable approach for handling complex system data based on UHPLC-MS, particularly for TCMPs.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Medicine, Chinese Traditional , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry
12.
Mol Nutr Food Res ; 68(3): e2300603, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072646

ABSTRACT

SCOPE: A growing body of evidence suggests that the harmful gut microbiota in depression patients can play a role in the progression of depression. There is limited research on troxerutin's impact on the central nervous system (CNS), especially in depression. The study finds that troxerutin effectively alleviates depression and anxiety-like behavior in mice by increasing the abundance of beneficial bacteria like Lactobacillus and Firmicutes while decreasing the abundance of harmful bacteria like Proteobacteria, Bacteroides, and Actinobacteria in the gut. Furthermore, the research reveals that troxerutin regulates various metabolic pathways in mice, including nucleotide metabolism, caffeine metabolism, purine metabolism, arginine biosynthesis, histidine metabolism, 2-oxocarboxylic acid metabolism, biosynthesis of amino acids, glycine, serine and threonine metabolism, and Arginine and proline metabolism. CONCLUSIONS: In conclusion, the study provides compelling evidence for the antidepressant efficacy of troxerutin. Through the investigation of the role of intestinal microorganisms and metabolites, the study identifies these factors as key players in troxerutin's ability to prevent depression. Troxerutin achieves its neuroprotective effects and effectively prevents depression and anxiety by modulating the abundance of gut microbiota, including Proteobacteria, Bacteroides, and Actinobacteria, as well as regulating metabolites such as creatine.


Subject(s)
Actinobacteria , Gastrointestinal Microbiome , Hydroxyethylrutoside/analogs & derivatives , Humans , Mice , Animals , Depression/drug therapy , Bacteria , Proteobacteria , Arginine
13.
Phytomedicine ; 123: 155243, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056147

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause joint inflammation and damage. Leonurine (LE) is an alkaloid found in Leonurus heterophyllus. It has anti-inflammatory effects. HYPOTHESIS/PURPOSE: The molecular mechanisms by which LE acts in RA are unclear and further investigation is required. METHODS: Mice with collagen-induced arthritis (CIA), and RA-fibroblast-like synoviocytes (FLSs) isolated from them were used as in vivo and in vitro models of RA, respectively. The therapeutic effects of LE on CIA-induced joint injury were investigated by micro-computed tomography, and staining with hematoxylin and eosin and Safranin-O/Fast Green. Cell Counting Kit-8, a Transwell® chamber, enzyme-linked immunosorbent assays, RT-qPCR, and western blotting were used to investigate the effects of LE on RA-FLS viability, migratory capacity, inflammation, microRNA-21 (miR-21) levels, the Hippo signaling pathway, and the effects and intrinsic mechanisms of related proteins. Dual luciferase was used to investigate the binding of miR-21 to YOD1 deubiquitinase (YOD1) and yes-associated protein (YAP). Immunofluorescence was used to investigate the localization of YAP within the nucleus and cytoplasm. RESULTS: Treatment with LE significantly inhibited joint swelling, bone damage, synovial inflammation, and proteoglycan loss in the CIA mice. It also reduced the proliferation, cell colonization, migration/invasion, and inflammation levels of RA-FLSs, and promoted miR-21 expression in vitro. The effects of LE on RA-FLSs were enhanced by an miR-21 mimic and reversed by an miR-21 inhibitor. The dual luciferase investigation confirmed that both YOD1 and YAP are direct targets of miR-21. Treatment with LE activated the Hippo signaling pathway, and promoted the downregulation and dephosphorylation of MST1 and LATS1 in RA, while inhibiting the activation of YOD1 and YAP. Regulation of the therapeutic effects of LE by miR-21 was counteracted by YOD1 overexpression, which caused the phosphorylation of YAP and prevented its nuclear ectopic position, thereby reducing LE effect on pro-proliferation-inhibiting apoptosis target genes. CONCLUSION: LE regulates the Hippo signaling pathway through the miR-21/YOD1/YAP axis to reduce joint inflammation and bone destruction in CIA mice, thereby inhibiting the growth and inflammation of RA-FLSs. LE has potential for the treatment of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Gallic Acid/analogs & derivatives , MicroRNAs , Animals , Mice , Hippo Signaling Pathway , X-Ray Microtomography , Arthritis, Rheumatoid/metabolism , Arthritis, Experimental/chemically induced , MicroRNAs/genetics , Inflammation/metabolism , Luciferases/metabolism , Luciferases/pharmacology , Luciferases/therapeutic use , Cell Proliferation , Fibroblasts , Cells, Cultured
14.
Adv Sci (Weinh) ; 11(5): e2304617, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044289

ABSTRACT

The interplay between immune cells/macrophages and fibroblast-like synoviocytes (FLSs) plays a pivotal role in initiating synovitis; however, their involvement in metabolic disorders, including diabetic osteoarthritis (DOA), is largely unknown. In this study, single-cell RNA sequencing (scRNA-seq) is employed to investigate the synovial cell composition of DOA. A significant enrichment of activated macrophages within eight distinct synovial cell clusters is found in DOA synovium. Moreover, it is demonstrated that increased glycolysis in FLSs is a key driver for DOA patients' synovial macrophage infiltration and polarization. In addition, the yes-associated protein 1 (YAP1)/thioredoxin-interacting protein (TXNIP) signaling axis is demonstrated to play a crucial role in regulating glucose transporter 1 (GLUT1)-dependent glycolysis in FLSs, thereby controlling the expression of a series of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) which may subsequently fine-tune the infiltration of M1-polarized synovial macrophages in DOA patients and db/db diabetic OA mice. For treatment, M1 macrophage membrane-camouflaged Verteporfin (Vt)-loaded PLGA nanoparticles (MVPs) are developed to ameliorate DOA progression by regulating the YAP1/TXNIP signaling axis, thus suppressing the synovial glycolysis and the infiltration of M1-polarized macrophages. The results provide several novel insights into the pathogenesis of DOA and offer a promising treatment approach for DOA.


Subject(s)
Diabetes Mellitus , Osteoarthritis , Synoviocytes , Humans , Mice , Animals , Synoviocytes/metabolism , Synoviocytes/pathology , Osteoarthritis/metabolism , Macrophages/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Diabetes Mellitus/metabolism , Fibroblasts/metabolism , Glycolysis
15.
J Ethnopharmacol ; 319(Pt 3): 117304, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37838294

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, Qi-zhi-wei-tong granule (QZWT) significantly reduced the major gastrointestinal and psychological symptoms of functional dyspepsia. AIM OF THE STUDY: We aimed to explore the therapeutic effect of QZWT treated chronic non-atrophic gastritis (CNAG) and to elucidate its potential mechanism. MATERIALS AND METHODS: The composition of QZWT was analysed by UPLC-Q/TOF-MS. The CNAG mice model was established by chronic restraint stress (CRS) in combination with iodoacetamide (IAA). Morphological staining was utilized to reveal the impact of QZWT on stomach and gut integrity. RT‒qPCR and ELISA were used to measure proinflammatory cytokines in the stomach, colon tissues and serum of CNAG mice. Next-generation sequencing of 16 S rDNA was applied to analyse the gut microbiota community of faecal samples. Finally, we investigated the faecal bile acid composition using GC‒MS. RESULTS: Twenty-one of the compounds from QZWT were successfully identified by UPLC-Q/TOF-MS analysis. QZWT enhanced gastric and intestinal integrity and suppressed inflammatory responses in CNAG mice. Moreover, QZWT treatment reshaped the gut microbiota structure by increasing the levels of the Akkermansia genus and decreasing the populations of the Desulfovibrio genus in CNAG mice. The alteration of gut microbiota was associated with gut bacteria BA metabolism. In addition, QZWT reduced BAs and especially decreased conjugated BAs in CNAG mice. Spearman's correlation analysis further confirmed the links between the changes in the gut microbiota and CNAG indices. CONCLUSIONS: QZWT can effectively inhibited gastrointestinal inflammatory responses of CNAG symptoms in mice; these effects may be closely related to restoring the balance of the gut microbiota and regulating BA metabolism to protect the gastric mucosa. This study provides a scientific reference for the pathogenesis of CNAG and the mechanism of QZWT treatment.


Subject(s)
Gastritis , Gastrointestinal Microbiome , Animals , Mice , Qi , Lipid Metabolism , Bile Acids and Salts , Gastritis/drug therapy
17.
Front Immunol ; 14: 1193053, 2023.
Article in English | MEDLINE | ID: mdl-37881439

ABSTRACT

Adult hippocampal neurogenesis generates functional neurons from neural progenitor cells in the hippocampal dentate gyrus (DG) to complement and repair neurons and neural circuits, thus benefiting the treatment of depression. Increasing evidence has shown that aberrant microglial activity can disrupt the appropriate formation and development of functional properties of neurogenesis, which will play a crucial role in the occurrence and development of depression. However, the mechanisms of the crosstalk between microglia and adult hippocampal neurogenesis in depression are not yet fully understood. Therefore, in this review, we first introduce recent discoveries regarding the roles of microglia and adult hippocampal neurogenesis in the etiology of depression. Then, we systematically discuss the possible mechanisms of how microglia regulate adult hippocampal neurogenesis in depression according to recent studies, which involve toll-like receptors, microglial polarization, fractalkine-C-X3-C motif chemokine receptor 1, hypothalamic-pituitary-adrenal axis, cytokines, brain-derived neurotrophic factor, and the microbiota-gut-brain axis, etc. In addition, we summarize the promising drugs that could improve the adult hippocampal neurogenesis by regulating the microglia. These findings will help us understand the complicated pathological mechanisms of depression and shed light on the development of new treatment strategies for this disease.


Subject(s)
Depression , Microglia , Depression/drug therapy , Microglia/pathology , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Hippocampus/physiology , Neurogenesis/physiology
18.
Phytomedicine ; 120: 155039, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37672855

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) is a significant global health concern that can lead to depression in affected patients. Liquiritin apioside (LA) possesses anti-oxidative and anti-inflammatory properties. However, its anti-inflammatory mechanism in IBD has not been extensively studied. PURPOSE: This study elucidates the pivotal role of LA in alleviating inflammation by regulating gut metabiota-derived metabolites and evaluating its regulative effects on promoting a balance of Th17/Treg cells in colitis mice. METHODS: To evaluate the effect of LA on IBD,16S rRNA gene sequencing and UPLC-QTOF-MS analysis were used to identify the changes of intestinal bacteria and their metabolites. Cytokines levels were determined by ELISA and qPCR, while immune cell ratios were evaluated via flow cytometry. RESULTS: Our findings revealed that LA treatment ameliorated general states of DSS-induced colitis mice and their accompanying depressive behaviors. Moreover, LA restricted the expression of pro-inflammatory cytokines and revised the imbalanced Treg/Th17 differentiation, while promoting SCFAs production in inflamed colon tissues. Fecal microbiota transplantation from LA-fed mice also corrected the imbalanced Treg/Th17 differentiation, indicating that LA-mediated restoration of the colonic Treg/Th17 balance mainly depends on the changes in gut metabolites. CONCLUSION: These results provide scientific evidence explaining the apparent paradox of low bioavailability and high bioactivity in polyphenols, and suggesting that LA could be used as a potential dietary supplement for the prevention and improvement of IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Animals , Mice , Depression/drug therapy , RNA, Ribosomal, 16S , T-Lymphocytes, Regulatory , Colitis/drug therapy , Inflammation , Cytokines
19.
J Affect Disord ; 340: 626-638, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37595897

ABSTRACT

Bipolar disorder (BD) is a severe psychiatric illness with an increasing prevalence worldwide. Although the pathological mechanism of and pharmacological interventions for BD have been extensively investigated in preclinical and clinical studies, a scientometric analysis of the developmental trends, interdisciplinary frontiers, and research hotspots in this field has not yet been conducted. Therefore, we performed a comprehensive scientometric review of 55,358 published studies on BD over the past two decades (2002-2021) to identify the most frequently used keywords and explore research hotspots and trajectories. The present findings revealed the main distribution, knowledge structure, topic evolution, and emerging topics of BD research. Analysing the risk factors, pathogenesis, key brain regions, comorbid conditions, and treatment strategies for BD contributed to understanding of the aetiology, progression, and treatment of this disorder. These findings provided substantial support for continued research in this area.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/diagnosis , Bipolar Disorder/epidemiology , Bipolar Disorder/therapy , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL