Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080204

ABSTRACT

The aim of this study was to develop a novel antidepressant with high activity. Based on the findings of molecular docking, eight novel curcumin analogues were evaluated in vitro to check for antidepressant efficacy. Among them, CACN136 had the strongest antidepressant effect. Firstly, CACN136 had a stronger 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) radical ion scavenging ability (IC50: 17.500 ± 0.267 µg/mL) compared to ascorbic acid (IC50: 38.858 ± 0.263 µg/mL) and curcumin (27.189 ± 0.192 µg/mL). Secondly, only CACN136 demonstrated clear protective effects on cells damaged by glutamate and oxidative stress at all concentrations. Finally, only CACN136 showed ASP + inhibition and was more effective than fluoxetine hydrochloride (FLU) at low concentrations. To further confirm the antidepressant effect of CACN136 in vivo, the CUMS model was established. Following 28 days of oral administration of CUMS mice, CACN136 increased the central area residence time in the open-field test, significantly increased the sucrose preference rate in the sucrose preference test (P < 0.001) and significantly reduced the immobility period in the tail suspension test (P < 0.0001), all of which were more effective than those of FLU. Subsequent research indicated that the antidepressant properties of CACN136 were linked to a decrease in the metabolism of 5-HT and the modulation of oxidative stress levels in vivo. In particular, the activation of the Keap1-Nrf2/BDNF-TrkB signaling pathway by CACN136 resulted in elevated levels of antioxidant enzymes, enhancing the antioxidant capability in mice subjected to CUMS. In conclusion, CACN136 has the potential to treat depression and could be an effective antidepressant.

2.
J Org Chem ; 89(14): 9841-9852, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38917372

ABSTRACT

A novel methodology for the synthesis of nitrones via palladium-catalyzed redox cross-coupling of nitro compounds and alcohols is established. The protocol is a mild, convenient, ligand-free, and scalable synthesis method that can be compatible with various nitro compounds and alcohols. Nitrone is a significant multifunctional platform synthon which can be synthesized directly and efficiently via this tactic from commercially available and cheap raw materials.

3.
RSC Adv ; 14(26): 18519-18527, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38860246

ABSTRACT

The traditional pyridine nitrogen oxide-based antimicrobial agents are often associated with health risks due to heavy metal enrichment. To mitigate this concern, we synthesized two novel complexes, Pr2(mpo)6(H2O)2 and Pr(hpo)(mpo)2(H2O)2, and integrated rare-earth salts, Hhpo (2-hydroxypyridine-N-oxide) and Nampo (2-mercapto-pyridine-N-oxide sodium salt). These complexes were characterized through infrared analysis, elemental analysis, thermogravimetric analysis, and X-ray crystallographic analysis. Our comparative analyses demonstrate that the synthesized rare-earth complexes exhibit stronger antimicrobial activity against Staphylococcus aureus (S. aureus ATCC6538) and Escherichia coli (E. coli ATCC25922) compared to the ligands and rare-earth salts alone. Quantitative results revealed the lowest inhibitory concentrations of the two complexes against S. aureus ATCC6538 and E. coli ATCC25922 at 3.125 µg mL-1, 6.25 µg mL-1, 3.125 µg mL-1 and 6.25 µg mL-1, respectively. Preliminary investigations indicated that the antibacterial mechanism of these complexes involved promoting intracellular substance exudation to achieve antibacterial effects. Incorporation of these complexes into polymeric antimicrobial films resulted in a potent antimicrobial effect, achieving a 100% inhibition rate against S. aureus ATCC6538 and E. coli ATCC25922 at a low addition level of 0.6 wt%. Our results suggest that nitrogen oxide-based praseodymium complexes have potential for various antimicrobial applications.

5.
Dalton Trans ; 53(12): 5601-5607, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38436609

ABSTRACT

The design and synthesis of a Gd(III) metal-organic framework with the formula [Gd4(BTDI)3(DMF)4]n (JXUST-40, H4BTDI = 5,5'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid) are reported hererin. Interestingly, a reversible single-crystal-to-single-crystal transition between JXUST-40 and {[Gd4(BTDI)3(H2O)4]·6H2O}n (JXUST-40a) was achieved under the stimulation of heat and solvents. Both JXUST-40 and JXUST-40a exhibited good stability when soaked in common solvents and aqueous solutions with pH values of 1-12. Magnetic studies showed that JXUST-40a has a larger magnetocaloric effect with -ΔSmaxm = 26.65 J kg-1 K-1 at 2 K and 7 T than JXUST-40 due to its larger magnetic density. Structural analyses indicated that the coordinated solvent molecules play a crucial role in the coordination environment around the Gd(III) ions and the change in the framework, ultimately leading to the changes in the pore size and magnetism between JXUST-40 and JXUST-40a. In addition, both isomorphic [Dy4(BTDI)3(DMF)4]n (JXUST-41) and {[Dy4(BTDI)3(H2O)4]·6H2O}n (JXUST-41a) displayed slow magnetic relaxation behaviour.

SELECTION OF CITATIONS
SEARCH DETAIL